Extended Single Particle Model of Li-Ion Batteries Towards High Current Applications

Paulo Kemper, Dongsuk Kum
{"title":"Extended Single Particle Model of Li-Ion Batteries Towards High Current Applications","authors":"Paulo Kemper, Dongsuk Kum","doi":"10.1109/VPPC.2013.6671682","DOIUrl":null,"url":null,"abstract":"Single particle models (SPM) are usually limited to low currents, which is a serious constrain for the usage of such models into vehicular battery management systems. The present study develops a physics-based ordinary differential equation (ODE) model, which is called extended single particle model (ESPM). In order to maintain the physical significance of the ODE model, a first-principle electrochemical partial differential equations (PDE) model is directly converted into an ODE model using volume-average method. The simulation results show that the ESPM model achieves an accuracy improvement of at least 14% when compared to the standard SPM for various levels of current inputs with only slight increase in computation time. The developed model paves the way for further improvements towards high-current, electrochemical ODE models with high physical significance and low computation burden.","PeriodicalId":119598,"journal":{"name":"2013 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2013.6671682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Single particle models (SPM) are usually limited to low currents, which is a serious constrain for the usage of such models into vehicular battery management systems. The present study develops a physics-based ordinary differential equation (ODE) model, which is called extended single particle model (ESPM). In order to maintain the physical significance of the ODE model, a first-principle electrochemical partial differential equations (PDE) model is directly converted into an ODE model using volume-average method. The simulation results show that the ESPM model achieves an accuracy improvement of at least 14% when compared to the standard SPM for various levels of current inputs with only slight increase in computation time. The developed model paves the way for further improvements towards high-current, electrochemical ODE models with high physical significance and low computation burden.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向大电流应用的锂离子电池扩展单粒子模型
单粒子模型(SPM)通常仅限于低电流,这严重限制了这种模型在汽车电池管理系统中的应用。本研究发展了一种基于物理学的常微分方程(ODE)模型,称为扩展单粒子模型(ESPM)。为了保持ODE模型的物理意义,采用体积平均法将第一原理电化学偏微分方程(PDE)模型直接转化为ODE模型。仿真结果表明,与标准SPM模型相比,该模型在不同电流输入水平下的精度提高了至少14%,而计算时间仅略有增加。该模型为进一步改进高物理意义、低计算负担的大电流电化学ODE模型奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Characteristics Improvement of Power Battery Module for Electric Vehicles Battery State Estimation Using Mixed Kalman/Hinfinity, Adaptive Luenberger and Sliding Mode Observer A Comparison Study of the Model Based SOC Estimation Methods for Lithium-Ion Batteries Modeling for Control and Optimal Design of a Power Steering Pump and an Air Conditioning Compressor Used in Heavy Duty Trucks Verification of the Shifting Mechanism of Clutchless Geared Smart Transmission Using the Compact Car Size Test Bench
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1