Yali Nie, M. Ferro, P. Sommella, M. Carratù, S. Cacciapuoti, G. D. Leo, J. Lundgren, G. Fabbrocini
{"title":"Ensembling CNNs for dermoscopic analysis of suspicious skin lesions","authors":"Yali Nie, M. Ferro, P. Sommella, M. Carratù, S. Cacciapuoti, G. D. Leo, J. Lundgren, G. Fabbrocini","doi":"10.1109/MeMeA52024.2021.9478760","DOIUrl":null,"url":null,"abstract":"Deep Convolution Neural Networks (CNN) enable advanced methods to predict the skin cancer classes through the automatic analysis of digital dermoscopic images. However, small datasets' availability often allows the models to be characterized by low prediction accuracy and poor generalization ability, which significantly influences clinical decisions. This paper proposes to use an original ensembling of multiple CNNs as feature extractors able to detect and measure skin lesions atypical criteria according to the well-known diagnostic method 7-Point Check List. The experimental results show that the Artificial Intelligence-based model can suitably manage the classification uncertainty of the single CNNs and finally distinguish melanomas from benignant nevi. Diagnostic performance is promising in terms of sensitivity and specificity towards a decision-supporting system used by a dermatologist with low experience during clinical practice.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deep Convolution Neural Networks (CNN) enable advanced methods to predict the skin cancer classes through the automatic analysis of digital dermoscopic images. However, small datasets' availability often allows the models to be characterized by low prediction accuracy and poor generalization ability, which significantly influences clinical decisions. This paper proposes to use an original ensembling of multiple CNNs as feature extractors able to detect and measure skin lesions atypical criteria according to the well-known diagnostic method 7-Point Check List. The experimental results show that the Artificial Intelligence-based model can suitably manage the classification uncertainty of the single CNNs and finally distinguish melanomas from benignant nevi. Diagnostic performance is promising in terms of sensitivity and specificity towards a decision-supporting system used by a dermatologist with low experience during clinical practice.