Ensembling CNNs for dermoscopic analysis of suspicious skin lesions

Yali Nie, M. Ferro, P. Sommella, M. Carratù, S. Cacciapuoti, G. D. Leo, J. Lundgren, G. Fabbrocini
{"title":"Ensembling CNNs for dermoscopic analysis of suspicious skin lesions","authors":"Yali Nie, M. Ferro, P. Sommella, M. Carratù, S. Cacciapuoti, G. D. Leo, J. Lundgren, G. Fabbrocini","doi":"10.1109/MeMeA52024.2021.9478760","DOIUrl":null,"url":null,"abstract":"Deep Convolution Neural Networks (CNN) enable advanced methods to predict the skin cancer classes through the automatic analysis of digital dermoscopic images. However, small datasets' availability often allows the models to be characterized by low prediction accuracy and poor generalization ability, which significantly influences clinical decisions. This paper proposes to use an original ensembling of multiple CNNs as feature extractors able to detect and measure skin lesions atypical criteria according to the well-known diagnostic method 7-Point Check List. The experimental results show that the Artificial Intelligence-based model can suitably manage the classification uncertainty of the single CNNs and finally distinguish melanomas from benignant nevi. Diagnostic performance is promising in terms of sensitivity and specificity towards a decision-supporting system used by a dermatologist with low experience during clinical practice.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep Convolution Neural Networks (CNN) enable advanced methods to predict the skin cancer classes through the automatic analysis of digital dermoscopic images. However, small datasets' availability often allows the models to be characterized by low prediction accuracy and poor generalization ability, which significantly influences clinical decisions. This paper proposes to use an original ensembling of multiple CNNs as feature extractors able to detect and measure skin lesions atypical criteria according to the well-known diagnostic method 7-Point Check List. The experimental results show that the Artificial Intelligence-based model can suitably manage the classification uncertainty of the single CNNs and finally distinguish melanomas from benignant nevi. Diagnostic performance is promising in terms of sensitivity and specificity towards a decision-supporting system used by a dermatologist with low experience during clinical practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成cnn用于可疑皮肤病变的皮肤镜分析
深度卷积神经网络(CNN)通过对数字皮肤镜图像的自动分析,实现了预测皮肤癌类别的先进方法。然而,由于数据集较小,模型的预测精度较低,泛化能力较差,严重影响临床决策。本文提出使用多个cnn的原始集合作为特征提取器,能够根据著名的7点检查表诊断方法检测和测量皮肤病变的非典型标准。实验结果表明,基于人工智能的模型可以很好地管理单个cnn的分类不确定性,最终区分出黑色素瘤和良性肿瘤。诊断性能是有希望的敏感性和特异性对决策支持系统使用的皮肤科医生在临床实践经验低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ML algorithms for the assessment of prescribed physical exercises Measuring the Effect of Rhythmic Auditory Stimuli on Parkinsonian Gait in Challenging Settings A preliminary study on the dynamic characterization of a MEMS microgripper for biomedical applications Gait Parameters of Elderly Subjects in Single-task and Dual-task with three different MIMU set-ups The use of cognitive training and tDCS for the treatment of an high potential subject: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1