An Evaluation of the Water Absorption and Density Properties of Expanded Polystyrene Sanded Concrete

J. Abah, E. Ndububa, E. Ikpe
{"title":"An Evaluation of the Water Absorption and Density Properties of Expanded Polystyrene Sanded Concrete","authors":"J. Abah, E. Ndububa, E. Ikpe","doi":"10.4236/ojce.2018.84037","DOIUrl":null,"url":null,"abstract":"In this paper, the evaluation of the mechanical and hygro-thermal properties of expanded polystyrene-sanded lightweight concrete (EPSLC) was examined. Evaluated are the mechanical properties in terms of density; and the hygro-thermal property using water absorption (capillary absorption and total immersion) as measures. The research used 30% volume of EPS to replace natural coarse aggregate to produce a lightweight concrete, which is expected to be economical, serviceable and meet the required standards for lightweight concretes. The concrete bulk and oven dry densities were obtained as 1789 KN/m3 and 1674 kg/m3 respectively, while the total water and capillary water absorption increases with time of suction. The high rate of water absorption at the early periods of the test has corresponding capillary coefficient of steep slope within the same period. The relationship between the variables Q the water absorption per unit area of the specimen and K the capillary coefficient, is that as the water absorption gets higher, so does the capillary coefficient and the percentage of the variation is expressed by the correlation coefficient R2. Therefore, the values of R2 as depicted in the graphs shows a high percentage of variation. The moisture capacity is 6.9%. All the laboratory tests were, conducted in accordance with standard codes of practice. The significance of the research is that innovative technology is employed to modify and improve processes in construction industry, thus, enhancing sustainable environmental, management of industrial waste, and cheaper and economic construction. With the 30% replacement of coarse aggregate, the density and water absorption properties of concrete produced are within acceptable limits. Therefore, EPS can be used to produce lightweight concrete that will perform the required function at this level of replacement.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"351 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ojce.2018.84037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, the evaluation of the mechanical and hygro-thermal properties of expanded polystyrene-sanded lightweight concrete (EPSLC) was examined. Evaluated are the mechanical properties in terms of density; and the hygro-thermal property using water absorption (capillary absorption and total immersion) as measures. The research used 30% volume of EPS to replace natural coarse aggregate to produce a lightweight concrete, which is expected to be economical, serviceable and meet the required standards for lightweight concretes. The concrete bulk and oven dry densities were obtained as 1789 KN/m3 and 1674 kg/m3 respectively, while the total water and capillary water absorption increases with time of suction. The high rate of water absorption at the early periods of the test has corresponding capillary coefficient of steep slope within the same period. The relationship between the variables Q the water absorption per unit area of the specimen and K the capillary coefficient, is that as the water absorption gets higher, so does the capillary coefficient and the percentage of the variation is expressed by the correlation coefficient R2. Therefore, the values of R2 as depicted in the graphs shows a high percentage of variation. The moisture capacity is 6.9%. All the laboratory tests were, conducted in accordance with standard codes of practice. The significance of the research is that innovative technology is employed to modify and improve processes in construction industry, thus, enhancing sustainable environmental, management of industrial waste, and cheaper and economic construction. With the 30% replacement of coarse aggregate, the density and water absorption properties of concrete produced are within acceptable limits. Therefore, EPS can be used to produce lightweight concrete that will perform the required function at this level of replacement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膨胀聚苯乙烯砂混凝土吸水性能和密度性能的评价
对膨胀聚苯乙烯砂轻质混凝土(EPSLC)的力学性能和湿热性能进行了评价。用密度来评估机械性能;并以吸水率(毛细吸收率和总浸没率)为衡量指标。本研究采用30%体积的EPS代替天然粗骨料制成轻量化混凝土,预计该轻量化混凝土经济、耐用,符合轻量化混凝土的要求标准。混凝土体积密度和干密度分别为1789 KN/m3和1674 kg/m3,总吸水率和毛管吸水率随吸水时间的增加而增加。试验前期的高吸水率与同期的陡坡毛细系数相对应。试件单位面积吸水率Q与毛细系数K的关系为:随着吸水率的增大,毛细系数也随之增大,其变化的百分比用相关系数R2表示。因此,图中所示的R2值显示了很高的变异百分比。含水率6.9%。所有实验室测试都是按照标准操作守则进行的。本研究的意义在于利用创新技术改造和改进建筑业的工艺,从而提高可持续的环境,工业废物的管理,以及更廉价和经济的建筑。在粗骨料置换30%的情况下,生产的混凝土密度和吸水性能均在可接受范围内。因此,EPS可用于生产轻质混凝土,将执行所需的功能,在这个级别的替换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interchange Sight Distance and Design: Aspects and Implementation A Slip-Force Device for Maintaining Constant Lateral Pressure on Retaining Structures in Expansive Soils Practical Engineering Behavior of Egyptian Collapsible Soils, Laboratory and In-Situ Experimental Study Structural Health Monitoring for Reinforced Concrete Containment Using Inner Electrical Resistivity Method Hardening Properties of Foamed Concrete with Circulating Fluidized Bed Boiler Ash, Blast Furnace Slag, and Desulfurization Gypsum as the Binder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1