FFT-Based Approximations for Black-Box Optimization

Madison Lee, O. Haddadin, T. Javidi
{"title":"FFT-Based Approximations for Black-Box Optimization","authors":"Madison Lee, O. Haddadin, T. Javidi","doi":"10.1109/SSP53291.2023.10208071","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of black-box function optimization. We propose an FFT-based algorithm that adaptively updates the parameters of a bandlimited Gaussian process surrogate model for the function. Our algorithm uses these parameters to construct approximate upper confidence bounds that determine its sampling behavior. We show that when the underlying function can be extended as a periodic function whose bandwidth is sufficiently small relative to the evaluation budget, our models converge to a perfect reconstruction, allowing our algorithm to recover the true optimizer. For periodic bandlimited function spaces, our algorithm has reduced complexity compared to traditional GP-UCB-based algorithms and demonstrates improved robustness.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the problem of black-box function optimization. We propose an FFT-based algorithm that adaptively updates the parameters of a bandlimited Gaussian process surrogate model for the function. Our algorithm uses these parameters to construct approximate upper confidence bounds that determine its sampling behavior. We show that when the underlying function can be extended as a periodic function whose bandwidth is sufficiently small relative to the evaluation budget, our models converge to a perfect reconstruction, allowing our algorithm to recover the true optimizer. For periodic bandlimited function spaces, our algorithm has reduced complexity compared to traditional GP-UCB-based algorithms and demonstrates improved robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于fft的黑盒优化近似
本文研究了黑盒函数优化问题。我们提出了一种基于fft的算法,该算法自适应地更新函数的带宽限制高斯过程代理模型的参数。我们的算法使用这些参数来构造近似的上置信区间,以确定其采样行为。我们证明,当底层函数可以扩展为一个周期函数,其带宽相对于评估预算足够小时,我们的模型收敛到一个完美的重建,允许我们的算法恢复真正的优化器。对于周期性带宽限制的函数空间,我们的算法与传统的基于gp - ucb的算法相比降低了复杂性,并表现出更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1