Development of a Virtual Environment Based Image Generation Tool for Neural Network Training

R. Arenas, P. Delmas, Alfonso Gastelum-Strozzi
{"title":"Development of a Virtual Environment Based Image Generation Tool for Neural Network Training","authors":"R. Arenas, P. Delmas, Alfonso Gastelum-Strozzi","doi":"10.1109/IVCNZ51579.2020.9290491","DOIUrl":null,"url":null,"abstract":"We present a computational tool to generate visual and descriptive data used as additional training images for neural networks involved in image recognition tasks. The work is inspired by the problem posed to acquire enough data, in order to train service robots, with the goal of improving the range of objects in the environment with which they can interact. The tool provides a framework that allows users to easily setup different environments with the visual information needed for the training, accordingly to their needs. The tool was developed with the Unity engine, and it was designed to be able to import external prefabs. These models are standardized and catalogued into lists, which are accessed to create more complex and diverse virtual environments. Another component of the tool adds an additional layer of complexity by creating randomized environments with different conditions (scale, position and orientation of objects, and environmental illumination). The performance of the created dataset was tested by training the information on the YOLO-V3 (You Only Look Once) architecture and testing on both artificial and real images.","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a computational tool to generate visual and descriptive data used as additional training images for neural networks involved in image recognition tasks. The work is inspired by the problem posed to acquire enough data, in order to train service robots, with the goal of improving the range of objects in the environment with which they can interact. The tool provides a framework that allows users to easily setup different environments with the visual information needed for the training, accordingly to their needs. The tool was developed with the Unity engine, and it was designed to be able to import external prefabs. These models are standardized and catalogued into lists, which are accessed to create more complex and diverse virtual environments. Another component of the tool adds an additional layer of complexity by creating randomized environments with different conditions (scale, position and orientation of objects, and environmental illumination). The performance of the created dataset was tested by training the information on the YOLO-V3 (You Only Look Once) architecture and testing on both artificial and real images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于虚拟环境的神经网络训练图像生成工具的开发
我们提出了一种计算工具,用于生成视觉和描述性数据,作为涉及图像识别任务的神经网络的额外训练图像。这项工作的灵感来自于一个问题,即获取足够的数据,以训练服务机器人,目标是提高环境中物体的范围,使它们能够与之互动。该工具提供了一个框架,允许用户根据自己的需要轻松地设置不同的环境,并提供培训所需的视觉信息。该工具是使用Unity引擎开发的,它被设计成能够导入外部预制件。这些模型被标准化并编目到列表中,可以访问这些列表来创建更复杂和多样化的虚拟环境。该工具的另一个组件通过创建具有不同条件(对象的规模、位置和方向以及环境照明)的随机环境增加了额外的复杂性层。通过在YOLO-V3 (You Only Look Once)架构上训练信息,并在人工图像和真实图像上进行测试,测试了所创建数据集的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image and Text fusion for UPMC Food-101 using BERT and CNNs Predicting Cherry Quality Using Siamese Networks Wavelet Based Thresholding for Fourier Ptychography Microscopy Improving the Efficient Neural Architecture Search via Rewarding Modifications A fair comparison of the EEG signal classification methods for alcoholic subject identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1