Target Detection Using 3-D Sparse Underwater Senor Array Network

Hao Liang, Q. Liang
{"title":"Target Detection Using 3-D Sparse Underwater Senor Array Network","authors":"Hao Liang, Q. Liang","doi":"10.1109/MASS.2015.113","DOIUrl":null,"url":null,"abstract":"Underwater target detection has been widely used nowadays. In this paper, we show that the 3-D nested-array system can provide O(N2) degree of freedom(DOF) by using only N physical sensors when the second order statistics of the received data is used, which means we can use less sensors to get a better performance. A maximum likelihood (ML) estimation algorithm for underwater target size detection is also introduced. Theoretical analysis illustrates that our underwater sensor network can greatly reduce the variance of target estimation. We show that our maximum likelihood estimator is unbiased, also the Cramer-Rao lower bound can be achieved when estimating the variance of parameter. Simulations further validate these theoretical results.","PeriodicalId":436496,"journal":{"name":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2015.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Underwater target detection has been widely used nowadays. In this paper, we show that the 3-D nested-array system can provide O(N2) degree of freedom(DOF) by using only N physical sensors when the second order statistics of the received data is used, which means we can use less sensors to get a better performance. A maximum likelihood (ML) estimation algorithm for underwater target size detection is also introduced. Theoretical analysis illustrates that our underwater sensor network can greatly reduce the variance of target estimation. We show that our maximum likelihood estimator is unbiased, also the Cramer-Rao lower bound can be achieved when estimating the variance of parameter. Simulations further validate these theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三维稀疏水下传感器阵列网络的目标检测
目前,水下目标探测已得到了广泛的应用。在本文中,我们证明了三维嵌套阵列系统在使用接收数据的二阶统计量时,仅使用N个物理传感器就可以提供O(N2)自由度(DOF),这意味着我们可以使用较少的传感器获得更好的性能。介绍了一种用于水下目标尺寸检测的最大似然估计算法。理论分析表明,我们的水下传感器网络可以大大减小目标估计的方差。我们证明了我们的极大似然估计量是无偏的,并且在估计参数方差时可以达到Cramer-Rao下界。仿真进一步验证了这些理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Provisioning for High Energy Efficiency and Resource Utilization in Cloud RANs An Energy Efficient and Restricted Tour Construction for Mobile Sink in Wireless Sensor Networks MQCC: Maximum Queue Congestion Control for Multipath Networks with Blockage Context-Aware Crowd-Sensing in Opportunistic Mobile Social Networks Study of Hadoop-MapReduce on Google N-Gram Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1