Analyzing Tourism Information on Twitter for a Local City

Kazutaka Shimada, Shunsuke Inoue, H. Maeda, Tsutomu Endo
{"title":"Analyzing Tourism Information on Twitter for a Local City","authors":"Kazutaka Shimada, Shunsuke Inoue, H. Maeda, Tsutomu Endo","doi":"10.1109/SSNE.2011.27","DOIUrl":null,"url":null,"abstract":"Tourism for a local city is one of the most important key industries. The Web contains much information for the tourism, such as impressions and sentiments about sightseeing areas. Analyzing the information is a significant task for tourism informatics. In this paper, we propose a tourism information analysis system for a local city. The target resource for the analysis is information on Twitter. First, we discuss a method to extract tweets (posted sentences) relating to the target locations and tourism events. Then, we analyze the polarity of the extracted tweets; positive or negative opinions. It is well-known as a P/N classification task in natural language processing. For the process, we employ an unsupervised machine learning approach that uses seed words. We evaluate and consider the extraction and P/N classification tasks. The experimental result about P/N classification shows the effectiveness of our method.","PeriodicalId":131008,"journal":{"name":"2011 First ACIS International Symposium on Software and Network Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First ACIS International Symposium on Software and Network Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSNE.2011.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Tourism for a local city is one of the most important key industries. The Web contains much information for the tourism, such as impressions and sentiments about sightseeing areas. Analyzing the information is a significant task for tourism informatics. In this paper, we propose a tourism information analysis system for a local city. The target resource for the analysis is information on Twitter. First, we discuss a method to extract tweets (posted sentences) relating to the target locations and tourism events. Then, we analyze the polarity of the extracted tweets; positive or negative opinions. It is well-known as a P/N classification task in natural language processing. For the process, we employ an unsupervised machine learning approach that uses seed words. We evaluate and consider the extraction and P/N classification tasks. The experimental result about P/N classification shows the effectiveness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析当地城市Twitter上的旅游信息
旅游业是一个地方城市最重要的关键产业之一。网上有很多旅游信息,比如对观光地区的印象和感想。旅游信息分析是旅游信息学的一项重要任务。本文提出了一个地方城市旅游信息分析系统。分析的目标资源是Twitter上的信息。首先,我们讨论了一种提取与目标地点和旅游事件相关的tweet(发布的句子)的方法。然后,我们分析提取的推文的极性;积极或消极的意见。它被称为自然语言处理中的P/N分类任务。在这个过程中,我们采用了一种使用种子词的无监督机器学习方法。我们评估并考虑了提取和P/N分类任务。P/N分类的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Secure Routing Scheme for DSR Shopping Mall System with Image Retrieval Based on UML Designing Phantoms for Industrial Computed Tomography Finding Problem by Information Diagram An Automated Detection Method of Solder Joint Defects Using 3D Computed Tomography for IC Package Inspection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1