A scalable bottom-up data mining algorithm for relational databases

G. Giuffrida, Lee G. Cooper, W. Chu
{"title":"A scalable bottom-up data mining algorithm for relational databases","authors":"G. Giuffrida, Lee G. Cooper, W. Chu","doi":"10.1109/SSDM.1998.688125","DOIUrl":null,"url":null,"abstract":"Machine learning induction algorithms are difficult to scale to very large databases because of their memory-bound nature. Using virtual memory results in a significant performance degradation. To overcome such shortcomings, we developed a classification rule induction algorithm for relational databases. Our algorithm uses a bottom-up rule generation strategy that is more effective for mining databases having large cardinality of nominal variables. We have successfully used our algorithm to mine a retail grocery database containing more than 1.6 million records in about 5 hours on a dual Pentium processor PC.","PeriodicalId":120937,"journal":{"name":"Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDM.1998.688125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Machine learning induction algorithms are difficult to scale to very large databases because of their memory-bound nature. Using virtual memory results in a significant performance degradation. To overcome such shortcomings, we developed a classification rule induction algorithm for relational databases. Our algorithm uses a bottom-up rule generation strategy that is more effective for mining databases having large cardinality of nominal variables. We have successfully used our algorithm to mine a retail grocery database containing more than 1.6 million records in about 5 hours on a dual Pentium processor PC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向关系数据库的可伸缩自底向上数据挖掘算法
机器学习归纳算法很难扩展到非常大的数据库,因为它们的内存限制的性质。使用虚拟内存会导致显著的性能下降。为了克服这些缺点,我们开发了一种面向关系数据库的分类规则归纳算法。我们的算法使用自下而上的规则生成策略,该策略对于挖掘具有大量名义变量基数的数据库更有效。我们已经成功地使用我们的算法在一台双奔腾处理器的PC上在大约5小时内挖掘了一个包含160多万条记录的零售杂货数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Providing information on environmental change: data management strategies and Internet access approaches within the UK Environmental Change Network Building geo-scientific applications on top of GeoToolKit: a case study of data integration Integrated metadata-systems within statistical offices Information technology implementation for a distributed data system serving Earth scientists: seasonal to interannual ESIP A Web-based database system for conducting outcomes research via the Internet: the National Comprehensive Cancer Network system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1