Improving the quality of neural TTS using long-form content and multi-speaker multi-style modeling

T. Raitio, Javier Latorre, Andrea Davis, Tuuli H. Morrill, L. Golipour
{"title":"Improving the quality of neural TTS using long-form content and multi-speaker multi-style modeling","authors":"T. Raitio, Javier Latorre, Andrea Davis, Tuuli H. Morrill, L. Golipour","doi":"10.21437/ssw.2023-23","DOIUrl":null,"url":null,"abstract":"Neural text-to-speech (TTS) can provide quality close to natural speech if an adequate amount of high-quality speech material is available for training. However, acquiring speech data for TTS training is costly and time-consuming, especially if the goal is to generate different speaking styles. In this work, we show that we can transfer speaking style across speakers and improve the quality of synthetic speech by training a multi-speaker multi-style (MSMS) model with long-form recordings, in addition to regular TTS recordings. In particular, we show that 1) multi-speaker modeling improves the overall TTS quality, 2) the proposed MSMS approach outperforms pre-training and fine-tuning approach when utilizing additional multi-speaker data, and 3) long-form speaking style is highly rated regardless of the target text domain.","PeriodicalId":346639,"journal":{"name":"12th ISCA Speech Synthesis Workshop (SSW2023)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th ISCA Speech Synthesis Workshop (SSW2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ssw.2023-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural text-to-speech (TTS) can provide quality close to natural speech if an adequate amount of high-quality speech material is available for training. However, acquiring speech data for TTS training is costly and time-consuming, especially if the goal is to generate different speaking styles. In this work, we show that we can transfer speaking style across speakers and improve the quality of synthetic speech by training a multi-speaker multi-style (MSMS) model with long-form recordings, in addition to regular TTS recordings. In particular, we show that 1) multi-speaker modeling improves the overall TTS quality, 2) the proposed MSMS approach outperforms pre-training and fine-tuning approach when utilizing additional multi-speaker data, and 3) long-form speaking style is highly rated regardless of the target text domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用长内容和多说话人多风格建模提高神经TTS的质量
如果有足够数量的高质量语音材料可供训练,神经文本到语音(TTS)可以提供接近自然语音的质量。然而,获取用于TTS训练的语音数据是昂贵且耗时的,特别是如果目标是生成不同的说话风格。在这项工作中,我们表明,除了常规的TTS录音外,我们还可以通过长格式录音训练多扬声器多风格(MSMS)模型,在说话者之间传递说话风格,并提高合成语音的质量。特别是,我们发现1)多说话人建模提高了整体TTS质量;2)在使用额外的多说话人数据时,所提出的MSMS方法优于预训练和微调方法;3)无论目标文本域如何,长格式说话风格都得到了很高的评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Re-examining the quality dimensions of synthetic speech Synthesising turn-taking cues using natural conversational data Diffusion Transformer for Adaptive Text-to-Speech Adaptive Duration Modification of Speech using Masked Convolutional Networks and Open-Loop Time Warping Audiobook synthesis with long-form neural text-to-speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1