{"title":"Frequency hopping patterns for simultaneous multiple-beam sonar imaging","authors":"P. Cassereau, J. Jaffe","doi":"10.1109/ICASSP.1987.1169477","DOIUrl":null,"url":null,"abstract":"This paper describes the design of frequency-hopped signals for a multi-beam imaging system. A frequency hopping pattern is a frequency-coded uniform pulse train. The signal is divided into M time intervals, with each interval assigned a different frequency chosen from a set of N frequencies. A set of N patterns composed of N-1 frequencies can be generated using first-order Reed-Solomon codewords. These patterns exhibit very good correlation properties. In a frequency-hopped multi-beam imaging system, each beam is associated with a pattern and transmits a coded waveform. All N beams can be transmitted simultaneously resulting in a high scan-rate, high resolution imaging device. Furthermore, in the presence of noise and medium spreading effects, a frequency-hopped imaging device performs better than conventional systems by showing better noise rejection and less sensitivity to spreading effects.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper describes the design of frequency-hopped signals for a multi-beam imaging system. A frequency hopping pattern is a frequency-coded uniform pulse train. The signal is divided into M time intervals, with each interval assigned a different frequency chosen from a set of N frequencies. A set of N patterns composed of N-1 frequencies can be generated using first-order Reed-Solomon codewords. These patterns exhibit very good correlation properties. In a frequency-hopped multi-beam imaging system, each beam is associated with a pattern and transmits a coded waveform. All N beams can be transmitted simultaneously resulting in a high scan-rate, high resolution imaging device. Furthermore, in the presence of noise and medium spreading effects, a frequency-hopped imaging device performs better than conventional systems by showing better noise rejection and less sensitivity to spreading effects.