Anonymizing Location Information in Unstructured Text Using Knowledge Graph

Taisho Sasada, Yuzo Taenaka, Y. Kadobayashi
{"title":"Anonymizing Location Information in Unstructured Text Using Knowledge Graph","authors":"Taisho Sasada, Yuzo Taenaka, Y. Kadobayashi","doi":"10.1145/3428757.3429195","DOIUrl":null,"url":null,"abstract":"There is a growing need to anonymize data as new businesses are increasingly utilizing vast amount of unstructured text. Also, unstructured text have a risk of personal location estimation by considering location information. Nevertheless, existing generalizations do not take into location information and therefore cannot robustly handle this attack. In this study, we proposed anonymizing location information in unstructured text using knowledge graph newly constructed from an actual geographic information system. Our method has the advantages of anonymization, taking into account actual geographic information, handling abbreviations and spelling inconsistencies, and allowing for dynamic graph updates. The results of the evaluation experiments show that anonymization is more robust than existing methods against location estimation attacks without compromising its usefulness as a dataset. Also, we found that the names of organizations and places with a high probability of occurrence in unstructured text are more likely to lead to personal identification.","PeriodicalId":212557,"journal":{"name":"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3428757.3429195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

There is a growing need to anonymize data as new businesses are increasingly utilizing vast amount of unstructured text. Also, unstructured text have a risk of personal location estimation by considering location information. Nevertheless, existing generalizations do not take into location information and therefore cannot robustly handle this attack. In this study, we proposed anonymizing location information in unstructured text using knowledge graph newly constructed from an actual geographic information system. Our method has the advantages of anonymization, taking into account actual geographic information, handling abbreviations and spelling inconsistencies, and allowing for dynamic graph updates. The results of the evaluation experiments show that anonymization is more robust than existing methods against location estimation attacks without compromising its usefulness as a dataset. Also, we found that the names of organizations and places with a high probability of occurrence in unstructured text are more likely to lead to personal identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用知识图谱对非结构化文本中的位置信息进行匿名化
随着新业务越来越多地利用大量非结构化文本,对数据匿名化的需求越来越大。此外,通过考虑位置信息,非结构化文本存在个人位置估计的风险。然而,现有的归纳没有考虑位置信息,因此不能健壮地处理这种攻击。在本研究中,我们提出了利用从实际地理信息系统中新构建的知识图谱对非结构化文本中的位置信息进行匿名化。我们的方法具有匿名化、考虑实际地理信息、处理缩写和拼写不一致以及允许动态图形更新的优点。评估实验的结果表明,匿名化在不影响其作为数据集的可用性的情况下,比现有的位置估计攻击方法更具鲁棒性。此外,我们发现在非结构化文本中出现概率高的组织和地点的名称更有可能导致个人身份识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tailored Graph Embeddings for Entity Alignment on Historical Data CommunityCare A Comparison of Two Database Partitioning Approaches that Support Taxonomy-Based Query Answering Prediction of Cesarean Childbirth using Ensemble Machine Learning Methods Interoperability of Semantically-Enabled Web Services on the WoT: Challenges and Prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1