Word sense disambiguation using author topic model

Shougo Kaneishi, Takuya Tajima
{"title":"Word sense disambiguation using author topic model","authors":"Shougo Kaneishi, Takuya Tajima","doi":"10.1109/INDCOMP.2014.7011753","DOIUrl":null,"url":null,"abstract":"Purpose of this paper is what decrease situations of misleading in text, blog, tweet etc. We use Latent Dirichlet Allocation (LDA) for Word Sense Disambiguation (WSD). This paper experiments with a new approaches for WSD. The approach is WSD with author topic model. The availability of this approach is exerted on modeling of sentence on the Twitter. In this study, first flow is author estimate, and second flow is WSD. In the first flow, we use LDA topic modeling and dataset from novels in Japanese. We use collapsed Gibbs sampling as the estimated method for parameter of LDA. In the second flow, we use the dataset from the tweet on Twitter. By the two experiments, author topic model is found to be useful for WSD.","PeriodicalId":246465,"journal":{"name":"2014 IEEE International Symposium on Independent Computing (ISIC)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Independent Computing (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCOMP.2014.7011753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose of this paper is what decrease situations of misleading in text, blog, tweet etc. We use Latent Dirichlet Allocation (LDA) for Word Sense Disambiguation (WSD). This paper experiments with a new approaches for WSD. The approach is WSD with author topic model. The availability of this approach is exerted on modeling of sentence on the Twitter. In this study, first flow is author estimate, and second flow is WSD. In the first flow, we use LDA topic modeling and dataset from novels in Japanese. We use collapsed Gibbs sampling as the estimated method for parameter of LDA. In the second flow, we use the dataset from the tweet on Twitter. By the two experiments, author topic model is found to be useful for WSD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于作者主题模型的词义消歧
本文的目的是减少文本、博客、微博等的误导情况。我们使用潜在狄利克雷分配(LDA)进行词义消歧(WSD)。本文尝试了一种新的WSD方法。该方法是WSD与作者主题模型。该方法的有效性在Twitter上的句子建模中得到了验证。在本研究中,第一流为作者估计,第二流为WSD。在第一个流中,我们使用LDA主题建模和来自日文小说的数据集。我们使用折叠Gibbs抽样作为LDA参数的估计方法。在第二个流中,我们使用Twitter上的tweet的数据集。通过两个实验,作者的主题模型对WSD是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological approaches to locative prepositions The development of a multi-piecewise-based thinning description method Improving performance of decision boundary making with support vector machine based outlier detection A new steganography protocol for improving security of cloud storage services Verification of an image morphing based technology for improving the security in cloud storage services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1