N. Damer, F. Boutros, Philipp Terhörst, Andreas Braun, Arjan Kuijper
{"title":"P-Score: Performance Aligned Normalization and an Evaluation in Score-Level Multi-Biometric Fusion","authors":"N. Damer, F. Boutros, Philipp Terhörst, Andreas Braun, Arjan Kuijper","doi":"10.23919/EUSIPCO.2018.8553553","DOIUrl":null,"url":null,"abstract":"Normalization is an important step for different fusion, classification, and decision making applications. Previous normalization approaches considered bringing values from different sources into a common range or distribution characteristics. In this work we propose a new normalization approach that transfers values into a normalized space where their relative performance in binary decision making is aligned across their whole range. Multi-biometric verification is a typical problem where information from different sources are normalized and fused to make a binary decision and therefore a good platform to evaluate the proposed normalization. We conducted an evaluation on two publicly available databases and showed that the normalization solution we are proposing consistently outperformed state-of-the-art and best practice approaches, e.g. by reducing the false rejection rate at 0.01% false acceptance rate by 60-75% compared to the widely used z-score normalization under the sum-rule fusion.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Normalization is an important step for different fusion, classification, and decision making applications. Previous normalization approaches considered bringing values from different sources into a common range or distribution characteristics. In this work we propose a new normalization approach that transfers values into a normalized space where their relative performance in binary decision making is aligned across their whole range. Multi-biometric verification is a typical problem where information from different sources are normalized and fused to make a binary decision and therefore a good platform to evaluate the proposed normalization. We conducted an evaluation on two publicly available databases and showed that the normalization solution we are proposing consistently outperformed state-of-the-art and best practice approaches, e.g. by reducing the false rejection rate at 0.01% false acceptance rate by 60-75% compared to the widely used z-score normalization under the sum-rule fusion.