Autonomous driving system with feature extraction using a binarized autoencoder

Kota Hisafuru, Ryotaro Negishi, Soma Kawakami, D. Sato, Kazuki Yamashita, Keisuke Fukada, N. Togawa
{"title":"Autonomous driving system with feature extraction using a binarized autoencoder","authors":"Kota Hisafuru, Ryotaro Negishi, Soma Kawakami, D. Sato, Kazuki Yamashita, Keisuke Fukada, N. Togawa","doi":"10.1109/ICFPT56656.2022.9974267","DOIUrl":null,"url":null,"abstract":"In this study, we present an autonomous driving sys-tem that utilizes a binarized autoencoder implemented on a Field Programmable Gate Array (FPGA). The binarized autoencoder compresses the image into optimal features in this system. The recurrent neural network then determines the following control based on the feature values extracted from the autoencoder and the rotation speed of the motor. We reduced the model size by binarizing the autoencoder because of the limited on-chip memory of the FPGA. We implemented the system on an Ultra96-V2, a board with a programmable logic and processing system. The robot employing our implemented system exhibits robust control by recognizing the entire road marking and road edge line as a feature and drives autonomously along the specified route.","PeriodicalId":239314,"journal":{"name":"2022 International Conference on Field-Programmable Technology (ICFPT)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT56656.2022.9974267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present an autonomous driving sys-tem that utilizes a binarized autoencoder implemented on a Field Programmable Gate Array (FPGA). The binarized autoencoder compresses the image into optimal features in this system. The recurrent neural network then determines the following control based on the feature values extracted from the autoencoder and the rotation speed of the motor. We reduced the model size by binarizing the autoencoder because of the limited on-chip memory of the FPGA. We implemented the system on an Ultra96-V2, a board with a programmable logic and processing system. The robot employing our implemented system exhibits robust control by recognizing the entire road marking and road edge line as a feature and drives autonomously along the specified route.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二值化自编码器的自动驾驶系统特征提取
在本研究中,我们提出了一种利用现场可编程门阵列(FPGA)上实现的二值化自动编码器的自动驾驶系统。该系统采用二值化自编码器将图像压缩为最优特征。然后,循环神经网络根据从自编码器中提取的特征值和电机的转速确定后续控制。由于FPGA的片上存储器有限,我们通过二值化自动编码器来减小模型尺寸。我们在具有可编程逻辑和处理系统的主板Ultra96-V2上实现了该系统。采用我们实现的系统的机器人通过识别整个道路标记和道路边缘线作为特征,表现出鲁棒性控制,并沿着指定路线自动驾驶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Efficient FPGA-Based Approximate Multipliers for Error-Tolerant Computing FPT 22 on Site Proceedings The Impact of Hardware Folding on Dependability in Spaceborne FPGA-based Neural Networks Cloning the Unclonable: Physically Cloning an FPGA Ring-Oscillator PUF A Markovian Approach for Detecting Failures in the Xilinx SEM core
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1