Another Two-Timescale Duplex Neurodynamic Approach to Portfolio Selection

Man-Fai Leung, Jun Wang, Hangjun Che
{"title":"Another Two-Timescale Duplex Neurodynamic Approach to Portfolio Selection","authors":"Man-Fai Leung, Jun Wang, Hangjun Che","doi":"10.1109/ICICIP53388.2021.9642204","DOIUrl":null,"url":null,"abstract":"This paper is concerned with portfolio selection based on the Markowitz mean-variance framework using neurodynamic optimization. The portfolio optimization problem is formulated as a biconvex optimization problem. A two-timescale duplex neurodynamic approach is then applied for solving the profolio selection problem. The approach makes use of two recurrent neural networks (RNNs) which operate at different timescales for local search. A particle swarm optimization algorithm is employed to update the neuronal states of the two RNNs for global optima. Experimental results on four stock market datasets show the superior performance of the neurodynamic approach in terms of long-term expected returns.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with portfolio selection based on the Markowitz mean-variance framework using neurodynamic optimization. The portfolio optimization problem is formulated as a biconvex optimization problem. A two-timescale duplex neurodynamic approach is then applied for solving the profolio selection problem. The approach makes use of two recurrent neural networks (RNNs) which operate at different timescales for local search. A particle swarm optimization algorithm is employed to update the neuronal states of the two RNNs for global optima. Experimental results on four stock market datasets show the superior performance of the neurodynamic approach in terms of long-term expected returns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
投资组合选择的另一种双时间尺度双神经动力学方法
本文研究了基于马科维茨均值-方差框架的投资组合选择问题。将投资组合优化问题表述为一个双凸优化问题。然后采用双时间尺度双神经动力学方法求解组合选择问题。该方法利用两个在不同时间尺度上运行的递归神经网络(rnn)进行局部搜索。采用粒子群优化算法对两个rnn的神经元状态进行更新,达到全局最优。在四个股票市场数据集上的实验结果表明,神经动力学方法在长期预期收益方面表现优异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel RBF neural network based recognition of human upper limb active motion intention Time-Varying Polar Decomposition by Continuous-Time Model and Discrete-Time Algorithm of Zeroing Neural Network Using Zhang Time Discretization (ZTD) Integrated Res2Net combined with Seesaw loss for Long-Tailed PCG signal classification On Pinning Synchronization of An Array of Linearly Coupled Dynamical Network Design and Implementation of Braking Control for Hybrid Electric Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1