Approximation of Environment Models for an Air Gap Adjustment System in a Hybrid Planning Context

Philipp Adelt, A. Schmidt, Natascha Esau, L. Kleinjohann, B. Kleinjohann, Mirko Rose
{"title":"Approximation of Environment Models for an Air Gap Adjustment System in a Hybrid Planning Context","authors":"Philipp Adelt, A. Schmidt, Natascha Esau, L. Kleinjohann, B. Kleinjohann, Mirko Rose","doi":"10.1109/ISIC.2008.4635937","DOIUrl":null,"url":null,"abstract":"In mechatronic systems a lot of components above the controller level are needed for the development towards self-optimizing systems. Among them a hybrid planning architecture integrating discrete and continuous domains is of major importance to support the permanent determination of system objectives and their implementation during the course of action, which defines the principle of self-optimizing mechatronic systems. Such a novel hybrid planning architecture is outlined in this paper. In order to plan efficiently, environment models are needed for predicting future system behaviors. In this paper we propose a fuzzy logic based approach to environment modeling and apply it in a railway-bound domain within the context of an air gap adjustment system for a dual-fed linear motor powering a wheeled train.","PeriodicalId":342070,"journal":{"name":"2008 IEEE International Symposium on Intelligent Control","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2008.4635937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In mechatronic systems a lot of components above the controller level are needed for the development towards self-optimizing systems. Among them a hybrid planning architecture integrating discrete and continuous domains is of major importance to support the permanent determination of system objectives and their implementation during the course of action, which defines the principle of self-optimizing mechatronic systems. Such a novel hybrid planning architecture is outlined in this paper. In order to plan efficiently, environment models are needed for predicting future system behaviors. In this paper we propose a fuzzy logic based approach to environment modeling and apply it in a railway-bound domain within the context of an air gap adjustment system for a dual-fed linear motor powering a wheeled train.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合规划环境下气隙调节系统的环境模型逼近
在机电一体化系统中,为了实现自优化系统的发展,需要大量控制器级以上的元器件。其中,集成离散和连续域的混合规划体系结构对于支持系统目标的永久确定及其在行动过程中的实施具有重要意义,它定义了机电一体化系统的自优化原则。本文提出了一种新型的混合规划体系结构。为了有效地规划,需要环境模型来预测未来系统的行为。在本文中,我们提出了一种基于模糊逻辑的环境建模方法,并将其应用于铁路边界领域内的双馈线性电机驱动轮式列车的气隙调节系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Intelligent Control Scheme for Activated Sludge Wastewater Treatment Deterministic Learning and Rapid Dynamical Pattern Recognition of Discrete-Time Systems Dynamic Mode, Probe Based High Density Data Storage: A collaborative effort with IBM, Zurich Research Labs A Multi-agent System for Integrated Control and Asset Management of Petroleum Production Facilities - Part 2: Prototype Design Verification Discrete-time Neural Network Control for a Linear Induction Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1