{"title":"Harmonic Functions for Three-Dimensional Shape Estimation in Cylindrical Coordinates","authors":"Tim Baur, J. Reuter, Antonio Zea, U. Hanebeck","doi":"10.1109/MFI55806.2022.9913858","DOIUrl":null,"url":null,"abstract":"With the high resolution of modern sensors such as multilayer LiDARs, estimating the 3D shape in an extended object tracking procedure is possible. In recent years, 3D shapes have been estimated in spherical coordinates using Gaussian processes, spherical double Fourier series or spherical harmonics. However, observations have shown that in many scenarios only a few measurements are obtained from top or bottom surfaces, leading to error-prone estimates in spherical coordinates. Therefore, in this paper we propose to estimate the shape in cylindrical coordinates instead, applying harmonic functions. Specifically, we derive an expansion for 3D shapes in cylindrical coordinates by solving a boundary value problem for the Laplace equation. This shape representation is then integrated in a plain greedy association model and compared to shape estimation procedures in spherical coordinates. Since the shape representation is only integrated in a basic estimator, the results are preliminary and a detailed discussion for future work is presented at the end of the paper.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With the high resolution of modern sensors such as multilayer LiDARs, estimating the 3D shape in an extended object tracking procedure is possible. In recent years, 3D shapes have been estimated in spherical coordinates using Gaussian processes, spherical double Fourier series or spherical harmonics. However, observations have shown that in many scenarios only a few measurements are obtained from top or bottom surfaces, leading to error-prone estimates in spherical coordinates. Therefore, in this paper we propose to estimate the shape in cylindrical coordinates instead, applying harmonic functions. Specifically, we derive an expansion for 3D shapes in cylindrical coordinates by solving a boundary value problem for the Laplace equation. This shape representation is then integrated in a plain greedy association model and compared to shape estimation procedures in spherical coordinates. Since the shape representation is only integrated in a basic estimator, the results are preliminary and a detailed discussion for future work is presented at the end of the paper.