Location-Aware, Flexible Task Management for Collaborating Unmanned Autonomous Vehicles

M. Wang, Yang Zhao, A. Doboli
{"title":"Location-Aware, Flexible Task Management for Collaborating Unmanned Autonomous Vehicles","authors":"M. Wang, Yang Zhao, A. Doboli","doi":"10.1109/AHS.2009.67","DOIUrl":null,"url":null,"abstract":"Unmanned Autonomous Vehicles (UAVs) are emerging as a breakthrough concept in technology. A main challenge related to UAV control is devising flexible strategies with predictable performance in hard-to-predict conditions. This paper proposes an approach to performance predictive collaborative control of UAVs operating in environments with fixed targets. The paper offers detailed experimental insight on the quality, scalability and computational complexity of the proposed method.","PeriodicalId":318989,"journal":{"name":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2009.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Unmanned Autonomous Vehicles (UAVs) are emerging as a breakthrough concept in technology. A main challenge related to UAV control is devising flexible strategies with predictable performance in hard-to-predict conditions. This paper proposes an approach to performance predictive collaborative control of UAVs operating in environments with fixed targets. The paper offers detailed experimental insight on the quality, scalability and computational complexity of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协作无人驾驶汽车的位置感知、灵活任务管理
无人驾驶汽车(uav)正在成为技术上的突破性概念。与无人机控制相关的一个主要挑战是在难以预测的条件下设计具有可预测性能的灵活策略。提出了一种固定目标环境下无人机性能预测协同控制方法。本文对所提出的方法的质量、可扩展性和计算复杂性提供了详细的实验见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamically Adapted Low-Energy Fault Tolerant Processors Partial Bitstream 2-D Core Relocation for Reconfigurable Architectures Automated Wire Antennas Design using Dynamic Dominance Evolutionary Algorithm Adaptive Hardware Real-Time Task Scheduler of Multi-Core ATPA Environment Evolutionary Algorithms in Unreliable Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1