Development of an efficient secure biometric system by using iris, fingerprint, face

R. Telgad, Almas M. N. Siddiqui, Savita A. Lothe, P. Deshmukh, Gajanan Jadhao
{"title":"Development of an efficient secure biometric system by using iris, fingerprint, face","authors":"R. Telgad, Almas M. N. Siddiqui, Savita A. Lothe, P. Deshmukh, Gajanan Jadhao","doi":"10.1109/ICISIM.2017.8122156","DOIUrl":null,"url":null,"abstract":"In this research paper three biometric characteristics are used i.e. Fingerprint, Face, Iris at score level of Fusion. For finger print images two methods are used i.e. Minutiae Extraction and Gabor filter approach. For Iris recognition system Gabor wavelet is used for feature selection. For Face biometric system P.C.A. is used for feature selection. The match count of every trait is calculated. Then the generated result of match and non match is utilized for the sum score level fusion. Then decision is find out for persons recognition. The system is tested on std. Dataset and KVK data set. On KVK dataset it generates an the results as 99.7 % with FAR of 0.02% and FRR of 0.1% and for FVC 2004 dataset and MMU dataset it gives the result as 99.8 % with FAR of 0.11% and FRR of 0.09%","PeriodicalId":139000,"journal":{"name":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIM.2017.8122156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this research paper three biometric characteristics are used i.e. Fingerprint, Face, Iris at score level of Fusion. For finger print images two methods are used i.e. Minutiae Extraction and Gabor filter approach. For Iris recognition system Gabor wavelet is used for feature selection. For Face biometric system P.C.A. is used for feature selection. The match count of every trait is calculated. Then the generated result of match and non match is utilized for the sum score level fusion. Then decision is find out for persons recognition. The system is tested on std. Dataset and KVK data set. On KVK dataset it generates an the results as 99.7 % with FAR of 0.02% and FRR of 0.1% and for FVC 2004 dataset and MMU dataset it gives the result as 99.8 % with FAR of 0.11% and FRR of 0.09%
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于虹膜、指纹、人脸的高效安全生物识别系统的开发
本文采用指纹、人脸、虹膜三种生物特征进行融合得分。对于指纹图像,采用了两种方法:Minutiae Extraction和Gabor filter。虹膜识别系统采用Gabor小波进行特征选择。人脸生物识别系统采用pca进行特征选择。计算每个性状的匹配数。然后利用匹配和不匹配生成的结果进行总分数水平融合。然后决定为人们识别找出。在std数据集和KVK数据集上对系统进行了测试。对于KVK数据集,它生成的结果为99.7%,FAR为0.02%,FRR为0.1%;对于FVC 2004数据集和MMU数据集,它给出的结果为99.8%,FAR为0.11%,FRR为0.09%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid technique for splice site prediction Information fusion for images on FPGA: Pixel level with pseudo color Hierarchical document clustering based on cosine similarity measure Embedded home surveillance system with pyroelectric infrared sensor using GSM Healthcare data modeling in R
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1