True Factor Analysis in Medical Imaging: Dealing with High-Dimensional Spaces

A. Machado
{"title":"True Factor Analysis in Medical Imaging: Dealing with High-Dimensional Spaces","authors":"A. Machado","doi":"10.1109/SIBGRAPI.2005.50","DOIUrl":null,"url":null,"abstract":"This article presents a new method for discovering hidden patterns in high-dimensional dataset resulting from image registration. It is based on true factor analysis, a statistical model that aims to find clusters of correlated variables. Applied to medical imaging, factor analysis can potentially identify regions that have anatomic significance and lend insight to knowledge discovery and morphometric investigations related to pathologies. Existent factor analytic methods require the computation of the sample covariance matrix and are thus limited to low-dimensional variable spaces. The proposed algorithm is able to compute the coefficients of the model without the need of the covariance matrix, expanding its spectrum of applications. The method’s efficiency and effectiveness is demonstrated in a study of volumetric variability related to the Alzheimer’s disease.","PeriodicalId":193103,"journal":{"name":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2005.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a new method for discovering hidden patterns in high-dimensional dataset resulting from image registration. It is based on true factor analysis, a statistical model that aims to find clusters of correlated variables. Applied to medical imaging, factor analysis can potentially identify regions that have anatomic significance and lend insight to knowledge discovery and morphometric investigations related to pathologies. Existent factor analytic methods require the computation of the sample covariance matrix and are thus limited to low-dimensional variable spaces. The proposed algorithm is able to compute the coefficients of the model without the need of the covariance matrix, expanding its spectrum of applications. The method’s efficiency and effectiveness is demonstrated in a study of volumetric variability related to the Alzheimer’s disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医学影像中的真因子分析:处理高维空间
本文提出了一种从图像配准产生的高维数据集中发现隐藏模式的新方法。它基于真因子分析,这是一种旨在找到相关变量簇的统计模型。应用于医学成像,因子分析可以潜在地识别具有解剖意义的区域,并为与病理相关的知识发现和形态测量调查提供见解。现有的因子分析方法需要计算样本协方差矩阵,因而局限于低维变量空间。该算法无需协方差矩阵即可计算模型的系数,扩大了算法的应用范围。该方法的效率和有效性在与阿尔茨海默病相关的体积变异性研究中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Formation of Multifrequency Vibro-Acoustography: Theory and Computational Simulations Combining Methods to Stabilize and Increase Performance of Neural Network-Based Classifiers CHF: A Scalable Topological Data Structure for Tetrahedral Meshes A Calligraphic Interface for Interactive Free-Form Modeling with Large Datasets A Collision Detection and Response Scheme for Simplified Physically Based Animation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1