J. D. Schuddebeurs, P. Norman, C. Booth, G. Burt, J. Mcdonald
{"title":"Emerging Research Issues Regarding Integrated-Full-Electric-Propulsion","authors":"J. D. Schuddebeurs, P. Norman, C. Booth, G. Burt, J. Mcdonald","doi":"10.1109/UPEC.2006.367563","DOIUrl":null,"url":null,"abstract":"Integrated full electric propulsion (IFEP) currently provides advantages for both the commercial and naval shipping industries. However, in order to realise the full potential of this concept research into all aspects of IFEP system design and operation is necessary, particularly for naval applications where the operational requirements are more stringent and the need to mitigate the risk associated with the new technology is greater. This paper reviews current IFEP research programmes worldwide and identifies the core research issues under consideration. IFEP programmes such as the Norwegian commercial vessel-orientated EEAES programme and the UK-based ESTD, which is targeted at military applications, are discussed in more detail. This paper maintains that this existing IFEP research is creating further opportunities for research into the system-level dynamic behaviour and argues that such research is necessary to de-risk IFEP design. A simulation case study demonstrating the adverse effects on a marine electrical power system as a result of dynamic loading on the ship's propulsion system is also is included in the paper to support this argument","PeriodicalId":184186,"journal":{"name":"Proceedings of the 41st International Universities Power Engineering Conference","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st International Universities Power Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2006.367563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Integrated full electric propulsion (IFEP) currently provides advantages for both the commercial and naval shipping industries. However, in order to realise the full potential of this concept research into all aspects of IFEP system design and operation is necessary, particularly for naval applications where the operational requirements are more stringent and the need to mitigate the risk associated with the new technology is greater. This paper reviews current IFEP research programmes worldwide and identifies the core research issues under consideration. IFEP programmes such as the Norwegian commercial vessel-orientated EEAES programme and the UK-based ESTD, which is targeted at military applications, are discussed in more detail. This paper maintains that this existing IFEP research is creating further opportunities for research into the system-level dynamic behaviour and argues that such research is necessary to de-risk IFEP design. A simulation case study demonstrating the adverse effects on a marine electrical power system as a result of dynamic loading on the ship's propulsion system is also is included in the paper to support this argument