Symbolic Reasoning in Latent Space: Classical Planning as an Example

Masataro Asai, Hiroshi Kajino, A. Fukunaga, Christian Muise
{"title":"Symbolic Reasoning in Latent Space: Classical Planning as an Example","authors":"Masataro Asai, Hiroshi Kajino, A. Fukunaga, Christian Muise","doi":"10.3233/faia210349","DOIUrl":null,"url":null,"abstract":"Symbolic systems require hand-coded symbolic representation as input, resulting in a knowledge acquisition bottleneck. Meanwhile, although deep learning has achieved significant success in many fields, the knowledge is encoded in a subsymbolic representation which is incompatible with symbolic systems. To address the gap between the two fields, one has to solve Symbol Grounding problem: The question of how a machine can generate symbols automatically. We discuss our recent work called Latplan, an unsupervised architecture combining deep learning and classical planning. Given only an unlabeled set of image pairs showing a subset of transitions allowed in the environment (training inputs), Latplan learns a complete propositional PDDL action model of the environment. Later, when a pair of images representing the initial and the goal states (planning inputs) is given, Latplan finds a plan to the goal state in a symbolic latent space and returns a visualized plan execution. We discuss several key ideas that made Latplan possible which would hopefully extend to many other symbolic paradigms outside classical planning.","PeriodicalId":250200,"journal":{"name":"Neuro-Symbolic Artificial Intelligence","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-Symbolic Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/faia210349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Symbolic systems require hand-coded symbolic representation as input, resulting in a knowledge acquisition bottleneck. Meanwhile, although deep learning has achieved significant success in many fields, the knowledge is encoded in a subsymbolic representation which is incompatible with symbolic systems. To address the gap between the two fields, one has to solve Symbol Grounding problem: The question of how a machine can generate symbols automatically. We discuss our recent work called Latplan, an unsupervised architecture combining deep learning and classical planning. Given only an unlabeled set of image pairs showing a subset of transitions allowed in the environment (training inputs), Latplan learns a complete propositional PDDL action model of the environment. Later, when a pair of images representing the initial and the goal states (planning inputs) is given, Latplan finds a plan to the goal state in a symbolic latent space and returns a visualized plan execution. We discuss several key ideas that made Latplan possible which would hopefully extend to many other symbolic paradigms outside classical planning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
潜在空间中的符号推理:以经典规划为例
符号系统需要手工编码的符号表示作为输入,导致知识获取的瓶颈。与此同时,尽管深度学习在许多领域取得了显著的成功,但知识被编码为与符号系统不兼容的子符号表示。为了解决这两个领域之间的差距,人们必须解决符号接地问题:机器如何自动生成符号的问题。我们讨论了我们最近的作品Latplan,这是一个结合了深度学习和经典规划的无监督建筑。给定一组未标记的图像对,显示环境中允许的过渡子集(训练输入),Latplan学习环境的完整命题PDDL动作模型。然后,当给定一对表示初始状态和目标状态的图像(规划输入)时,Latplan在符号潜在空间中找到一个到目标状态的计划,并返回一个可视化的计划执行。我们讨论了使拉丁规划成为可能的几个关键思想,这些思想有望扩展到经典规划之外的许多其他符号范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuro-Symbolic Semantic Reasoning Abductive Learning Graph Reasoning Networks and Applications Neuro-Symbolic Artificial Intelligence: The State of the Art Logic Tensor Networks: Theory and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1