UAV-enabled Wireless Powered Communication Networks: A Joint Scheduling and Trajectory Optimization Approach

Ziwen An, Yanheng Liu, Geng Sun, Hongyang Pan, Aimin Wang
{"title":"UAV-enabled Wireless Powered Communication Networks: A Joint Scheduling and Trajectory Optimization Approach","authors":"Ziwen An, Yanheng Liu, Geng Sun, Hongyang Pan, Aimin Wang","doi":"10.1109/ISCC55528.2022.9913016","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicle (UAV)-enabled wireless powered communication networks (WPCN) are promising technologies in Internet of Things (IoTs). However, energy-constrained devices and connectivity in complex environments are two major challenges for IoTs. We consider a UAV-enabled WPCN scenario that a UAV can connect with the ground IoT devices (IoTDs). To connect and fly faster, UAV needs to be scheduled reasonably and the corresponding trajectory should be optimized. Thus, we formulate a UAV scheduling and trajectory optimization problem (USTOP) to minimize the total time so that improving the charging and transmission efficiency. Since conventional methods are difficult to solve USTOP, we propose an improved simulated annealing (ISA) with the variable size changing mechanism, the conflict resolution mechanism and the hybrid evolution method to solve it. Simulation results verify the effectiveness and performance of ISA under different scales of the network, and the stability of the proposed algorithm is verified.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9913016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Unmanned aerial vehicle (UAV)-enabled wireless powered communication networks (WPCN) are promising technologies in Internet of Things (IoTs). However, energy-constrained devices and connectivity in complex environments are two major challenges for IoTs. We consider a UAV-enabled WPCN scenario that a UAV can connect with the ground IoT devices (IoTDs). To connect and fly faster, UAV needs to be scheduled reasonably and the corresponding trajectory should be optimized. Thus, we formulate a UAV scheduling and trajectory optimization problem (USTOP) to minimize the total time so that improving the charging and transmission efficiency. Since conventional methods are difficult to solve USTOP, we propose an improved simulated annealing (ISA) with the variable size changing mechanism, the conflict resolution mechanism and the hybrid evolution method to solve it. Simulation results verify the effectiveness and performance of ISA under different scales of the network, and the stability of the proposed algorithm is verified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人机无线通信网络:一种联合调度和轨迹优化方法
基于无人机(UAV)的无线通信网络(WPCN)是物联网(iot)中很有前途的技术。然而,能源受限的设备和复杂环境中的连接是物联网面临的两大挑战。我们考虑了一个无人机支持的WPCN场景,其中无人机可以与地面物联网设备(iotd)连接。为了更快地连接和飞行,需要对无人机进行合理的调度,并优化相应的轨迹。为此,我们制定了无人机调度和轨迹优化问题(USTOP),以最小化总时间,从而提高充电和传输效率。针对传统方法难以求解USTOP问题的特点,提出了一种改进的模拟退火(ISA)方法,结合变尺寸变化机制、冲突解决机制和混合进化方法来求解USTOP问题。仿真结果验证了ISA在不同网络规模下的有效性和性能,验证了所提算法的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convergence-Time Analysis for the HTE Link Quality Estimator OCVC: An Overlapping-Enabled Cooperative Computing Protocol in Vehicular Fog Computing Non-Contact Heart Rate Signal Extraction and Identification Based on Speckle Image Active Eavesdroppers Detection System in Multi-hop Wireless Sensor Networks A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1