Extending Dimensions in Radviz based on mean shift

Fangfang Zhou, Wei Huang, Juncai Li, Yezi Huang, Yang Shi, Ying Zhao
{"title":"Extending Dimensions in Radviz based on mean shift","authors":"Fangfang Zhou, Wei Huang, Juncai Li, Yezi Huang, Yang Shi, Ying Zhao","doi":"10.1109/PACIFICVIS.2015.7156365","DOIUrl":null,"url":null,"abstract":"Radviz is a radial visualization technique which maps data from multiple dimensional space onto a planar picture. The dimensions placed on the circumference of a circle, called Dimension Anchors (DAs), can be reordered to reveal different patterns in the dataset. Extending the number of dimensions can enhance the flexibility in the placement of the DAs to explore more meaningful visualizations. In this paper, we describe a method which rationally extends a dimension to multiple new dimensions in Radviz. This method first calculates the probability distribution histogram of a dimension. The mean shift algorithm is applied to get centers of probability density to segment the histogram, and then the dimension can be extended according to the number of segments of the histogram. We also suggest using the Dunn's index to find the optimal placement of DAs, so the better effect of visual clustering could be achieved after the dimension expansion in Radviz. Finally, we demonstrate the usability of our approach on visually analysing the iris data and two other datasets.","PeriodicalId":177381,"journal":{"name":"2015 IEEE Pacific Visualization Symposium (PacificVis)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2015.7156365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Radviz is a radial visualization technique which maps data from multiple dimensional space onto a planar picture. The dimensions placed on the circumference of a circle, called Dimension Anchors (DAs), can be reordered to reveal different patterns in the dataset. Extending the number of dimensions can enhance the flexibility in the placement of the DAs to explore more meaningful visualizations. In this paper, we describe a method which rationally extends a dimension to multiple new dimensions in Radviz. This method first calculates the probability distribution histogram of a dimension. The mean shift algorithm is applied to get centers of probability density to segment the histogram, and then the dimension can be extended according to the number of segments of the histogram. We also suggest using the Dunn's index to find the optimal placement of DAs, so the better effect of visual clustering could be achieved after the dimension expansion in Radviz. Finally, we demonstrate the usability of our approach on visually analysing the iris data and two other datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于均值位移的Radviz维数扩展
Radviz是一种径向可视化技术,它将数据从多维空间映射到平面图像上。放置在圆周上的维度,称为维度锚点(da),可以重新排序以显示数据集中的不同模式。扩展维度的数量可以增强da放置的灵活性,从而探索更有意义的可视化。本文描述了一种在Radviz中合理地将一个维度扩展到多个新维度的方法。该方法首先计算一个维度的概率分布直方图。采用均值移位算法得到概率密度中心,对直方图进行分割,然后根据直方图的分段数进行维数扩展。我们还建议使用Dunn's index来寻找da的最优位置,这样在Radviz中进行维数展开后可以获得更好的视觉聚类效果。最后,我们展示了我们的方法在视觉分析虹膜数据和其他两个数据集上的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clutter-aware label layout MetaTracts - A method for robust extraction and visualization of carbon fiber bundles in fiber reinforced composites Variational circular treemaps for interactive visualization of hierarchical data Advanced lighting for unstructured-grid data visualization Laplacian-based dynamic graph visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1