Characterization of Disinformation Networks Using Graph Embeddings and Opinion Mining

O. Simek, Alyssa C. Mensch, Lin Li, Charlie K. Dagli
{"title":"Characterization of Disinformation Networks Using Graph Embeddings and Opinion Mining","authors":"O. Simek, Alyssa C. Mensch, Lin Li, Charlie K. Dagli","doi":"10.1109/EISIC49498.2019.9108876","DOIUrl":null,"url":null,"abstract":"Global social media networks' omnipresent access, real time responsiveness and ability to connect with and influence people have been responsible for these networks' sweeping growth. However, as an unintended consequence, these defining characteristics helped create a powerful new technology for spread of propaganda and false information. We present a novel approach for characterizing disinformation networks on social media and distinguishing between different network roles using graph embeddings and hierarchical clustering. In addition, using topic filtering, we correlate the node characterization results with proxy opinion estimates. We plan to study opinion dynamics using signal processing on graphs approaches using longer-timescale social media datasets with the goal to model and infer influence among users in social media networks.","PeriodicalId":117256,"journal":{"name":"2019 European Intelligence and Security Informatics Conference (EISIC)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Intelligence and Security Informatics Conference (EISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EISIC49498.2019.9108876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global social media networks' omnipresent access, real time responsiveness and ability to connect with and influence people have been responsible for these networks' sweeping growth. However, as an unintended consequence, these defining characteristics helped create a powerful new technology for spread of propaganda and false information. We present a novel approach for characterizing disinformation networks on social media and distinguishing between different network roles using graph embeddings and hierarchical clustering. In addition, using topic filtering, we correlate the node characterization results with proxy opinion estimates. We plan to study opinion dynamics using signal processing on graphs approaches using longer-timescale social media datasets with the goal to model and infer influence among users in social media networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图嵌入和意见挖掘的虚假信息网络表征
全球社交媒体网络的无所不在的访问、实时响应以及与人们联系和影响的能力是这些网络迅速增长的原因。然而,作为一个意想不到的后果,这些决定性的特征帮助创造了一种强大的传播宣传和虚假信息的新技术。我们提出了一种新的方法来表征社交媒体上的虚假信息网络,并使用图嵌入和分层聚类来区分不同的网络角色。此外,使用主题过滤,我们将节点表征结果与代理意见估计关联起来。我们计划使用长时间尺度社交媒体数据集的图形信号处理方法来研究意见动态,目的是建模和推断社交媒体网络中用户的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting Account Attributes for Analyzing Influence on Twitter Evaluation of Deep Learning Models for Ear Recognition Against Image Distortions Devising and Optimizing Crowd Control Strategies Using Agent-Based Modeling and Simulation Attack Hypothesis Generation Identifying Deceptive Reviews: Feature Exploration, Model Transferability and Classification Attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1