Reconstruction-Diffusion: An Improved Maximum Entropy Reconstruction Algorithm Based on the Robust Anisotropic Diffusion

H. I. A. Bustos, H. Y. Kim
{"title":"Reconstruction-Diffusion: An Improved Maximum Entropy Reconstruction Algorithm Based on the Robust Anisotropic Diffusion","authors":"H. I. A. Bustos, H. Y. Kim","doi":"10.1109/SIBGRAPI.2005.42","DOIUrl":null,"url":null,"abstract":"Maximum entropy (MENT) is a well-known image reconstruction algorithm. If only a small amount of acquisition data is available, this algorithm converges to a noisy and blurry image. We propose an improvement to this algorithm that consists on applying alternately the MENT reconstruction and the robust anisotropic diffusion (RAD). We have tested this idea for the reconstruction from full-angle parallel acquisition data, but the idea can be applied to any data acquisition scenario. The new technique has yielded surprisingly clear images with sharp edges even using extremely small amount of projection data.","PeriodicalId":193103,"journal":{"name":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2005.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Maximum entropy (MENT) is a well-known image reconstruction algorithm. If only a small amount of acquisition data is available, this algorithm converges to a noisy and blurry image. We propose an improvement to this algorithm that consists on applying alternately the MENT reconstruction and the robust anisotropic diffusion (RAD). We have tested this idea for the reconstruction from full-angle parallel acquisition data, but the idea can be applied to any data acquisition scenario. The new technique has yielded surprisingly clear images with sharp edges even using extremely small amount of projection data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重建-扩散:一种改进的基于鲁棒各向异性扩散的最大熵重建算法
最大熵(Maximum entropy, MENT)是一种著名的图像重建算法。当采集数据较少时,该算法会收敛到有噪声和模糊的图像。我们提出了一种改进算法,即交替应用MENT重建和鲁棒各向异性扩散(RAD)。我们已经在全角度平行采集数据的重建中测试了这个想法,但这个想法可以应用于任何数据采集场景。这项新技术即使使用极少量的投影数据,也能产生令人惊讶的清晰图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Formation of Multifrequency Vibro-Acoustography: Theory and Computational Simulations Combining Methods to Stabilize and Increase Performance of Neural Network-Based Classifiers CHF: A Scalable Topological Data Structure for Tetrahedral Meshes A Calligraphic Interface for Interactive Free-Form Modeling with Large Datasets A Collision Detection and Response Scheme for Simplified Physically Based Animation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1