A Process Mining Approach In Discovering Processes And Social Networks In My.Eskwela

Orven E. Llantos, Sherwyn P. Florin, Van Michael S. Ranque
{"title":"A Process Mining Approach In Discovering Processes And Social Networks In My.Eskwela","authors":"Orven E. Llantos, Sherwyn P. Florin, Van Michael S. Ranque","doi":"10.1109/SNAMS58071.2022.10062684","DOIUrl":null,"url":null,"abstract":"Pieces of literature discussing the process model in the learning management system are limited to student and teacher learning interactions. Including the learning interactions of principals and parents contributes to more detail of processes taking place during learning interactions on the platform. The study used process mining techniques and algorithms to extract the underlying processes that drive learning interactions in social learning management systems. The discovered processes for principals, teachers, students, and parents consequently show a precision value of 1, 0.542, 0.639, and 1, respectively. The preciseness of processes for each user group indicates an acceptable behavior (> 0.50) extracted from the event logs. On the other hand, social networks form from the processes that show the information flow of learning interactions from the principal to the students and parents, depicting everyone's effort for learning gain in favor of the student. This study's contribution expands beyond teacher-student interaction processes to include principals and parents, thereby generating a more concrete view of learning interaction in the social learning management system.","PeriodicalId":371668,"journal":{"name":"2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS)","volume":"368 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNAMS58071.2022.10062684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pieces of literature discussing the process model in the learning management system are limited to student and teacher learning interactions. Including the learning interactions of principals and parents contributes to more detail of processes taking place during learning interactions on the platform. The study used process mining techniques and algorithms to extract the underlying processes that drive learning interactions in social learning management systems. The discovered processes for principals, teachers, students, and parents consequently show a precision value of 1, 0.542, 0.639, and 1, respectively. The preciseness of processes for each user group indicates an acceptable behavior (> 0.50) extracted from the event logs. On the other hand, social networks form from the processes that show the information flow of learning interactions from the principal to the students and parents, depicting everyone's effort for learning gain in favor of the student. This study's contribution expands beyond teacher-student interaction processes to include principals and parents, thereby generating a more concrete view of learning interaction in the social learning management system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种发现过程和社会网络的过程挖掘方法。Eskwela
讨论学习管理系统中过程模型的文献仅限于学生和教师的学习互动。包括校长和家长的学习互动有助于更详细地了解在平台上学习互动过程中发生的过程。该研究使用过程挖掘技术和算法来提取驱动社会学习管理系统中学习交互的潜在过程。因此,校长、教师、学生和家长的发现过程的精度值分别为1、0.542、0.639和1。每个用户组的进程的精确性表示从事件日志中提取的可接受的行为(> 0.50)。另一方面,社会网络的形成过程显示了从校长到学生和家长的学习互动的信息流,描绘了每个人为学生的学习收益所做的努力。本研究的贡献从师生互动过程扩展到校长和家长,从而产生了社会学习管理系统中学习互动的更具体的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classifying Arabian Gulf Tweets to Detect People's Trends: A case study Implicit User Network Analysis of Communication Platform Open Data for Channel Recommendation Anomalous/Relevant Event Detection (A/RED): Active Machine Learning for Finding Rare Events Knowledge Management Role in Enhancing Customer Relationship Management in Hotels Industry in the UK Social Media Acceptance and e-Learning Post-Covid-19: New factors determine the extension of TAM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1