Robust and fully automated robotic bore inspection for high variant parts

G. Biegelbauer, M. Vincze
{"title":"Robust and fully automated robotic bore inspection for high variant parts","authors":"G. Biegelbauer, M. Vincze","doi":"10.1109/ROSE.2004.1317606","DOIUrl":null,"url":null,"abstract":"Bores and internal threads are critical parts of connections, bearings and engines, hydraulic and pneumatic systems and defective bore surfaces can cause problems. Project FibreScope sets out to introduce a system for automated bore surface inspection. Current systems miss a high flexibility or are mainly driven by human interaction and control. Therefore the main target of this work is to develop an automatic robotic system for rapid and flexible 100% surface inspection of bores with diameters from 4 to 50 mm. The main focus is to automatically detect and localize bores on arbitrary metallic objects. Using a laser scanner range images are taken, the bore is automatically located, and an automatic endoscopic inspection with a vision system is started. The main focus is on easy operating of the system achieved with rapid programming for the user. The paper describes the fully automated system and presents first results of the experiments and a public long-term demonstration (4 days) during an industrial fair.","PeriodicalId":142501,"journal":{"name":"International Workshop on Robot Sensing, 2004. ROSE 2004.","volume":"274 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Robot Sensing, 2004. ROSE 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2004.1317606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Bores and internal threads are critical parts of connections, bearings and engines, hydraulic and pneumatic systems and defective bore surfaces can cause problems. Project FibreScope sets out to introduce a system for automated bore surface inspection. Current systems miss a high flexibility or are mainly driven by human interaction and control. Therefore the main target of this work is to develop an automatic robotic system for rapid and flexible 100% surface inspection of bores with diameters from 4 to 50 mm. The main focus is to automatically detect and localize bores on arbitrary metallic objects. Using a laser scanner range images are taken, the bore is automatically located, and an automatic endoscopic inspection with a vision system is started. The main focus is on easy operating of the system achieved with rapid programming for the user. The paper describes the fully automated system and presents first results of the experiments and a public long-term demonstration (4 days) during an industrial fair.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高变型零件的坚固和全自动机器人镗孔检查
孔和内螺纹是连接、轴承和发动机、液压和气动系统的关键部件,有缺陷的孔表面会引起问题。fiberscope项目旨在引入一种自动钻孔表面检测系统。当前的系统缺乏高度的灵活性,或者主要由人的交互和控制驱动。因此,这项工作的主要目标是开发一个自动机器人系统,用于快速灵活的100%表面检测直径从4到50毫米的孔。该方法的主要目标是自动检测和定位任意金属物体上的钻孔。使用激光扫描仪拍摄范围内的图像,自动定位孔眼,并启动带有视觉系统的自动内窥镜检查。主要的重点是易于操作的系统实现与快速编程的用户。本文描述了全自动化系统,并介绍了实验的初步结果,并在工业博览会上进行了公开的长期演示(4天)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single element based tactile display Agent-based control for a dynamically reconfigurable mobile robotic structure Range of robotic applications at MAGNA STEYR and areas for further advancement in automotive operations Flexible inspection systems in the body-in-white manufacturing Principles and practice of real-time visual tracking for navigation and mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1