Incorporating Domain Knowledge into Multistrategical Image Classification

Haiwei Pan, Niu Zhang, Qilong Han, Guisheng Yin
{"title":"Incorporating Domain Knowledge into Multistrategical Image Classification","authors":"Haiwei Pan, Niu Zhang, Qilong Han, Guisheng Yin","doi":"10.1109/DBTA.2010.5658960","DOIUrl":null,"url":null,"abstract":"Medical image classification is an important part in domain-specific application image mining because there are several technical aspects which make this problem challenging. In this paper, we firstly quantify the domain knowledge about medical image (especially the symmetry), and then incorporate this quantified measurement into classification. We propose a multistrategical image classification method which utilizes various features by integrating two base classifiers. In our method, a base classifier is trained using the examples misclassified by another base classifier. Therefore, both base classifiers can be collaboratively trained. This complementary method gets a more efficient classification.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"490 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5658960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Medical image classification is an important part in domain-specific application image mining because there are several technical aspects which make this problem challenging. In this paper, we firstly quantify the domain knowledge about medical image (especially the symmetry), and then incorporate this quantified measurement into classification. We propose a multistrategical image classification method which utilizes various features by integrating two base classifiers. In our method, a base classifier is trained using the examples misclassified by another base classifier. Therefore, both base classifiers can be collaboratively trained. This complementary method gets a more efficient classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
领域知识在多策略图像分类中的应用
医学图像分类是特定领域应用图像挖掘的重要组成部分,由于涉及到几个技术方面的问题,使得该问题具有挑战性。本文首先对医学图像的领域知识(尤其是对称知识)进行量化,然后将量化的测量结果纳入分类中。本文提出了一种融合两个基分类器,利用多种特征的多策略图像分类方法。在我们的方法中,使用被另一个基分类器错误分类的示例来训练基分类器。因此,两个基分类器可以协同训练。这种互补方法得到了更有效的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SRJA: Iceberg Join Processing in Wireless Sensor Networks A New Method of Selecting Pivot Features for Structural Correspondence Learning in Domain Adaptive Sentiment Analysis Apply of Data Ming Technology in CRM A New Like Fibonacci Sequence and Its Properties Multisensor Estimation Fusion for Wireless Networks with Mixed Data Delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1