An incremental framework for classification of EEG signals using quantum particle swarm optimization

Kaveh Hassani, Won-sook Lee
{"title":"An incremental framework for classification of EEG signals using quantum particle swarm optimization","authors":"Kaveh Hassani, Won-sook Lee","doi":"10.1109/CIVEMSA.2014.6841436","DOIUrl":null,"url":null,"abstract":"Classification of electroencephalographic (EEG) signals is a sophisticated task that determines the accuracy of thought pattern recognition performed by computer-brain interface (BCI) which, in turn, determines the degree of naturalness of the interaction provided by that system. However, classifying the EEG signals is not a trivial task due to their non-stationary characteristics. In this paper, we introduce and utilize incremental quantum particle swarm optimization (IQPSO) algorithm for incremental classification of EEG data stream. IQPSO builds the classification model as a set of explicit rules which benefits from semantic symbolic knowledge representation and enhanced comprehensibility. We compared the performance of IQPSO against ten other classifiers on two EEG datasets. The results suggest that IQPSO outperforms other classifiers in terms of classification accuracy, precision and recall.","PeriodicalId":228132,"journal":{"name":"2014 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2014.6841436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Classification of electroencephalographic (EEG) signals is a sophisticated task that determines the accuracy of thought pattern recognition performed by computer-brain interface (BCI) which, in turn, determines the degree of naturalness of the interaction provided by that system. However, classifying the EEG signals is not a trivial task due to their non-stationary characteristics. In this paper, we introduce and utilize incremental quantum particle swarm optimization (IQPSO) algorithm for incremental classification of EEG data stream. IQPSO builds the classification model as a set of explicit rules which benefits from semantic symbolic knowledge representation and enhanced comprehensibility. We compared the performance of IQPSO against ten other classifiers on two EEG datasets. The results suggest that IQPSO outperforms other classifiers in terms of classification accuracy, precision and recall.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于量子粒子群优化的脑电信号增量分类框架
脑电图(EEG)信号的分类是一项复杂的任务,它决定了由计算机-脑接口(BCI)执行的思维模式识别的准确性,而BCI又决定了该系统提供的交互的自然程度。然而,由于脑电信号的非平稳特性,对其进行分类并不是一项简单的任务。本文介绍并利用增量量子粒子群算法对脑电数据流进行增量分类。IQPSO将分类模型构建为一组明确的规则,这得益于语义符号知识表示和增强的可理解性。我们在两个EEG数据集上比较了IQPSO与其他十个分类器的性能。结果表明,IQPSO在分类准确率、精密度和召回率方面优于其他分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of torque motor systems with PID controllers tuned by Bacterial Foraging Optimization algorithms Virtual calibration environment for a-priori estimation of measurement uncertainty ACO-based media content adaptation for e-learning environments Unsupervised machine learning via Hidden Markov Models for accurate clustering of plant stress levels based on imaged chlorophyll fluorescence profiles & their rate of change in time A security model for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1