{"title":"A Graphically-Based Machine Learning Approach for Remote Learning Services","authors":"A. Orsoni","doi":"10.1109/AMS.2007.2","DOIUrl":null,"url":null,"abstract":"Interactive learning is becoming increasingly important in the modern educational system. Ideally students should be able to expand on their knowledge, assess their progress and receive feedback from a remote location, outside the classroom. This research presents a graphically-based methodology to model the semantic structure of textual exchanges in the form of question and answer (Q/A). A machine learning approach is then presented which classifies questions and answers based on the similarities of their semantic structures. Because the methodology is graphically-based, similarities between graphs can be identified to establish context-free relationships/ associations between answers, or between questions and possible answers. By these means the relevant textual exchanges can be systematically analyzed and classified","PeriodicalId":198751,"journal":{"name":"First Asia International Conference on Modelling & Simulation (AMS'07)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Asia International Conference on Modelling & Simulation (AMS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2007.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Interactive learning is becoming increasingly important in the modern educational system. Ideally students should be able to expand on their knowledge, assess their progress and receive feedback from a remote location, outside the classroom. This research presents a graphically-based methodology to model the semantic structure of textual exchanges in the form of question and answer (Q/A). A machine learning approach is then presented which classifies questions and answers based on the similarities of their semantic structures. Because the methodology is graphically-based, similarities between graphs can be identified to establish context-free relationships/ associations between answers, or between questions and possible answers. By these means the relevant textual exchanges can be systematically analyzed and classified