Trustworthiness of t-Distributed Stochastic Neighbour Embedding

Shishir Pandey, R. Vaze
{"title":"Trustworthiness of t-Distributed Stochastic Neighbour Embedding","authors":"Shishir Pandey, R. Vaze","doi":"10.1145/2888451.2888465","DOIUrl":null,"url":null,"abstract":"A well known technique for embedding high dimensional objects in two or three dimensional space is the t-distributed stochastic neighbour embedding (t-SNE). The t-SNE minimizes the Kullback-Liebler (KL) divergence between two probability distributions, one induced on points in the high dimensional space and the other induced on points in the low dimensional embedding space. In this work, we consider a more general framework of using Rényi divergence which is parametrized by the order α, the KL-divergence is a special case when α → 1.We study how various Rényi divergences perform when compared to the KL-divergence. We show that in terms of the metrics of trustworthiness and neighbourhood preservation, the embedding becomes better as Rényi divergence approaches the KL-divergence.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"65 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2888451.2888465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A well known technique for embedding high dimensional objects in two or three dimensional space is the t-distributed stochastic neighbour embedding (t-SNE). The t-SNE minimizes the Kullback-Liebler (KL) divergence between two probability distributions, one induced on points in the high dimensional space and the other induced on points in the low dimensional embedding space. In this work, we consider a more general framework of using Rényi divergence which is parametrized by the order α, the KL-divergence is a special case when α → 1.We study how various Rényi divergences perform when compared to the KL-divergence. We show that in terms of the metrics of trustworthiness and neighbourhood preservation, the embedding becomes better as Rényi divergence approaches the KL-divergence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
t分布随机邻居嵌入的可信度
在二维或三维空间中嵌入高维对象的一种众所周知的技术是t分布随机邻居嵌入(t-SNE)。t-SNE最小化了两个概率分布之间的Kullback-Liebler (KL)散度,一个是在高维空间的点上引起的,另一个是在低维嵌入空间的点上引起的。在这项工作中,我们考虑了一个更一般的框架来使用r散度,它是由α阶参数化的,kl散度是当α→1时的特殊情况。我们研究了与kl -散度相比,各种r逍遥散度的表现。我们表明,在可信度和邻居保存的指标方面,当rsamnyi散度接近kl散度时,嵌入变得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Dynamics of Username Changing Behavior on Twitter Smart filters for social retrieval Improving Urban Transportation through Social Media Analytics AMEO 2015: A dataset comprising AMCAT test scores, biodata details and employment outcomes of job seekers Learning from Gurus: Analysis and Modeling of Reopened Questions on Stack Overflow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1