Automatic Web News Content Extraction Based on Similar Pages

Chunyuan Zhang, Z. Lin
{"title":"Automatic Web News Content Extraction Based on Similar Pages","authors":"Chunyuan Zhang, Z. Lin","doi":"10.1109/WISM.2010.154","DOIUrl":null,"url":null,"abstract":"Today most news pages are generated from some underlying structured source, so we think that template-dependent wrappers should be more suitable for them than template-independent wrappers. In this paper, we propose a novel automatic template-dependent Web news content extraction approach based on similar pages. Firstly, We choose two similar pages as training samples and represent them as two HTML DOM trees. Secondly, we create the maximum matching tree between the DOM trees using our simple tree matching and backtracking algorithm. Then, by analyzing the characteristics of nodes in the maximum matching tree, we eliminate the noise nodes to generate an extraction template. Finally, we build a template-dependent wrapper for target news pages whose structures are similar to the samples. Experimental results indicate that our approach is effective and efficient for Web news content extraction, and the average harmonic mean of precision and recall reaches 98.3% .","PeriodicalId":119569,"journal":{"name":"2010 International Conference on Web Information Systems and Mining","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Web Information Systems and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISM.2010.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Today most news pages are generated from some underlying structured source, so we think that template-dependent wrappers should be more suitable for them than template-independent wrappers. In this paper, we propose a novel automatic template-dependent Web news content extraction approach based on similar pages. Firstly, We choose two similar pages as training samples and represent them as two HTML DOM trees. Secondly, we create the maximum matching tree between the DOM trees using our simple tree matching and backtracking algorithm. Then, by analyzing the characteristics of nodes in the maximum matching tree, we eliminate the noise nodes to generate an extraction template. Finally, we build a template-dependent wrapper for target news pages whose structures are similar to the samples. Experimental results indicate that our approach is effective and efficient for Web news content extraction, and the average harmonic mean of precision and recall reaches 98.3% .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相似页面的网络新闻内容自动提取
今天,大多数新闻页面都是从一些底层结构化源生成的,因此我们认为依赖于模板的包装器应该比独立于模板的包装器更适合它们。本文提出了一种基于相似页面的基于模板的Web新闻内容自动提取方法。首先,我们选择两个相似的页面作为训练样本,并将它们表示为两个HTML DOM树。其次,我们使用简单的树匹配和回溯算法在DOM树之间创建最大匹配树。然后,通过分析最大匹配树中节点的特征,剔除噪声节点,生成提取模板;最后,我们为目标新闻页面构建一个依赖于模板的包装器,其结构与示例相似。实验结果表明,该方法对Web新闻内容提取是有效的,查准率和查全率的平均调和平均值达到了98.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical Simulation of Micronized Re-burning (MCR) Organic Acid Salt Used as an Accelerator The Research of the Grouping Algorithm for Chinese Learners Based on Transitive Closure Research on Multi-colony Diploid Genetic Algorithm for Production Logistics Scheduling Optimization Application of Second Order Diagonal Recurrent Neural Network in Nonlinear System Identification Synchronization Research of Uncoupled Hyper-chaotic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1