Subspace identification and predictive control of batch particulate processes

Abhinav Garg, P. Mhaskar
{"title":"Subspace identification and predictive control of batch particulate processes","authors":"Abhinav Garg, P. Mhaskar","doi":"10.23919/ACC.2017.7963003","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of subspace identification based modeling and predictive control of batch particulate process with an application to crystal size distribution (CSD) control in a batch crystallizer. To this end, a subspace identification technique is first adapted to identify a linear time invariant model for batch particulate processes. The estimated model is then deployed in a linear model predictive control (MPC) formulation to achieve a particle size distribution with desired characteristics subject to both manipulated input and product quality constraints. The proposed approach is implemented on a seeded batch crystallizer process and compared with an open loop policy as well as a PI controller based trajectory tracking policy. The proposed MPC is shown to achieve 27% and 30% improvements, respectively.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper addresses the problem of subspace identification based modeling and predictive control of batch particulate process with an application to crystal size distribution (CSD) control in a batch crystallizer. To this end, a subspace identification technique is first adapted to identify a linear time invariant model for batch particulate processes. The estimated model is then deployed in a linear model predictive control (MPC) formulation to achieve a particle size distribution with desired characteristics subject to both manipulated input and product quality constraints. The proposed approach is implemented on a seeded batch crystallizer process and compared with an open loop policy as well as a PI controller based trajectory tracking policy. The proposed MPC is shown to achieve 27% and 30% improvements, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
批量颗粒过程的子空间识别与预测控制
本文研究了基于子空间识别的间歇颗粒过程建模与预测控制问题,并将其应用于间歇结晶器的结晶粒度分布控制。为此,首先采用子空间识别技术来识别批量颗粒过程的线性时不变模型。然后将估计的模型部署在线性模型预测控制(MPC)公式中,以实现具有所需特性的粒度分布,同时受操纵输入和产品质量约束。在种子批结晶器过程中实现了该方法,并与开环策略和基于PI控制器的轨迹跟踪策略进行了比较。所提出的MPC分别实现了27%和30%的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary and semi-plenary sessions Spatial Iterative Learning Control: Systems with input saturation Distributed Second Order Sliding Modes for Optimal Load Frequency Control Adaptive optimal observer design via approximate dynamic programming Nonlinear adaptive stabilization of a class of planar slow-fast systems at a non-hyperbolic point
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1