Advanced non-linear model for accurate prediction of harmonically terminated power amplifier performance

J. Upshur, C. White, M. E. Bayne, B. Davis, L. Walker, M. Reece, W. L. Thompson, S. Cheng, R. Wallis
{"title":"Advanced non-linear model for accurate prediction of harmonically terminated power amplifier performance","authors":"J. Upshur, C. White, M. E. Bayne, B. Davis, L. Walker, M. Reece, W. L. Thompson, S. Cheng, R. Wallis","doi":"10.1109/MWSYM.2004.1339171","DOIUrl":null,"url":null,"abstract":"This paper presents recent advances in the state-of-the-art of neural network modeling of microwave FET devices. Enhanced accuracy of the adaptive knowledge-based neural network (AKBNN) model is shown by comparing predicted load-pull performance of the device to measurements in an automated harmonic load-pull system. Test devices are a 1.2 mm HFET measured at 2.2 GHz, and a 4.8 mm pHEMT at 8.4 GHz. Modeled versus measured comparisons include power-added efficiency and output power under fundamental frequency and second and third harmonic frequency tuning. The effectiveness of this modeling approach for the design of high-efficiency power amplifiers operating in Class-E or Class-F modes is discussed.","PeriodicalId":334675,"journal":{"name":"2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2004.1339171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents recent advances in the state-of-the-art of neural network modeling of microwave FET devices. Enhanced accuracy of the adaptive knowledge-based neural network (AKBNN) model is shown by comparing predicted load-pull performance of the device to measurements in an automated harmonic load-pull system. Test devices are a 1.2 mm HFET measured at 2.2 GHz, and a 4.8 mm pHEMT at 8.4 GHz. Modeled versus measured comparisons include power-added efficiency and output power under fundamental frequency and second and third harmonic frequency tuning. The effectiveness of this modeling approach for the design of high-efficiency power amplifiers operating in Class-E or Class-F modes is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于谐波端接功率放大器性能精确预测的先进非线性模型
本文介绍了微波场效应管器件神经网络建模的最新进展。通过将预测的负载-拉力性能与自动化谐波负载-拉力系统的测量结果进行比较,证明了自适应知识神经网络(AKBNN)模型提高了精度。测试器件为1.2 mm HFET,测量频率为2.2 GHz, 4.8 mm pHEMT测量频率为8.4 GHz。模型与测量值的比较包括在基频和二、三次谐波频率调谐下的功率增加效率和输出功率。讨论了该建模方法对设计工作在e类或f类模式下的高效功率放大器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of laser and RF oscillator phase noises New high-accuracy subgridding technique for the method of lines Low loss coupled line filters with transmission zeros in multi-layer thin film MCM-D technology Highly efficient power amplifier for CDMA base stations using Doherty configuration A V-band VCO and frequency divider MMICs for phased-locked loop
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1