{"title":"Effect of reactive power control by photovoltaic power generation on short-term voltage stability","authors":"K. Kawabe, Kazuyuki Tanaka","doi":"10.1109/PTC.2015.7232338","DOIUrl":null,"url":null,"abstract":"In this study, we investigate two countermeasures using inverters of photovoltaic (PV) power generation systems to avoid short-term voltage instability caused by sudden shutoff of the PV systems after a voltage sag. One of the countermeasures is the operation of the PV system at a leading power factor in the normal state, and the other is the dynamic reactive power control after the fault. First, these countermeasures are tested for a one-load infinite-bus system where we consider dynamic characteristics of an induction motor load. In the numerical example, a previously proposed analytical method is applied to discuss the effect of the countermeasure on the short-term voltage stability. Next, numerical examples are carried out for a five-machine five-load power system. The results show that these countermeasures can play a substantial role in preventing the voltage instability phenomena caused when a PV system is suddenly interrupted because of a fault.","PeriodicalId":193448,"journal":{"name":"2015 IEEE Eindhoven PowerTech","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Eindhoven PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2015.7232338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate two countermeasures using inverters of photovoltaic (PV) power generation systems to avoid short-term voltage instability caused by sudden shutoff of the PV systems after a voltage sag. One of the countermeasures is the operation of the PV system at a leading power factor in the normal state, and the other is the dynamic reactive power control after the fault. First, these countermeasures are tested for a one-load infinite-bus system where we consider dynamic characteristics of an induction motor load. In the numerical example, a previously proposed analytical method is applied to discuss the effect of the countermeasure on the short-term voltage stability. Next, numerical examples are carried out for a five-machine five-load power system. The results show that these countermeasures can play a substantial role in preventing the voltage instability phenomena caused when a PV system is suddenly interrupted because of a fault.