{"title":"Third-Party Damage Model for Gas Distribution Pipelines","authors":"Joseph S. Santarelli, Wenxing Zhou, Carrie Dudley-Tatsu","doi":"10.1115/IPC2018-78400","DOIUrl":null,"url":null,"abstract":"Third-party damage (TPD) is any damage to underground infrastructure that occurs during work unrelated to the asset. In 2015, there were 10,107 TPD incidents in Canada causing over a billion dollars in estimated damage. TPD is the leading cause of failure for distribution gas pipelines; since distribution pipelines are generally located in areas with high population densities, TPD has significant safety and economic implications. In this study, a probabilistic model is developed to qualify the probability of failure of distribution pipelines due to TPD. The model consists of a fault tree model to quantify the probability of hit given the occurrence of third-party excavation activities and the methodology to evaluate the probability of failure given hit. Fault tree analysis (FTA) is a top down, deductive failure analysis method which uses Boolean logic to combine a series of basic events to analyze the state of a system. Earlier prior research demonstrated the ability of a FTA to quantify the probability of TPD occurring on natural gas transmission pipeline systems. These models allow for a quantitative analysis of preventative measures and, in conjunction with current practices, facilitate a predictive method to plan and optimize resource allocation for damage mitigation and emergency preparedness. The developed TPD model is validated using the data provided from a region in Southwest Ontario. The model will provide distribution companies with a practical tool to identify third-party damage hot spots, develop proactive third-party damage prevention measures, and prioritize damage repair activities using a risk-based approach.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"07 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Third-party damage (TPD) is any damage to underground infrastructure that occurs during work unrelated to the asset. In 2015, there were 10,107 TPD incidents in Canada causing over a billion dollars in estimated damage. TPD is the leading cause of failure for distribution gas pipelines; since distribution pipelines are generally located in areas with high population densities, TPD has significant safety and economic implications. In this study, a probabilistic model is developed to qualify the probability of failure of distribution pipelines due to TPD. The model consists of a fault tree model to quantify the probability of hit given the occurrence of third-party excavation activities and the methodology to evaluate the probability of failure given hit. Fault tree analysis (FTA) is a top down, deductive failure analysis method which uses Boolean logic to combine a series of basic events to analyze the state of a system. Earlier prior research demonstrated the ability of a FTA to quantify the probability of TPD occurring on natural gas transmission pipeline systems. These models allow for a quantitative analysis of preventative measures and, in conjunction with current practices, facilitate a predictive method to plan and optimize resource allocation for damage mitigation and emergency preparedness. The developed TPD model is validated using the data provided from a region in Southwest Ontario. The model will provide distribution companies with a practical tool to identify third-party damage hot spots, develop proactive third-party damage prevention measures, and prioritize damage repair activities using a risk-based approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
输气管道第三方损害模型
第三方损害(TPD)是指在与资产无关的工作期间对地下基础设施造成的任何损害。2015年,加拿大共发生10107起TPD事故,估计造成的损失超过10亿美元。TPD是配气管道失效的主要原因;由于配电管道通常位于人口密度高的地区,因此TPD具有重大的安全和经济影响。在本研究中,建立了一个概率模型来限定配电管道因TPD而失效的概率。该模型包括一个故障树模型,用于量化第三方挖掘活动发生时的命中概率,以及在命中情况下评估失效概率的方法。故障树分析(FTA)是一种自顶向下的演绎故障分析方法,它利用布尔逻辑将一系列基本事件结合起来分析系统的状态。先前的研究表明,FTA能够量化天然气输送管道系统发生TPD的概率。这些模型允许对预防措施进行定量分析,并与目前的做法相结合,促进了一种预测方法,以规划和优化用于减轻损害和应急准备的资源分配。开发的TPD模型使用安大略省西南部地区提供的数据进行了验证。该模型将为分销公司提供实用工具,以识别第三方损坏热点,制定主动的第三方损坏预防措施,并使用基于风险的方法优先考虑损坏修复活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pipeline Dent Fatigue Crack Leak Rate for Liquids Pipelines and the Application to Release Consequence Assessment Automated Creation of the Pipeline Digital Twin During Construction: Improvement to Construction Quality and Pipeline Integrity Accelerating Industry Performance Through Collaborative Continual Improvement Assessment of Stress Based Design Pipelines Experiencing High Axial Strains The Application of Bayesian Network Threat Model for Corrosion Assessment of Pipeline in Design Stage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1