A Diffusion Adaptation Approach to model Brain Responses in an EEG-based Hyperscanning Study

A. Falcon-Caro, M. Frîncu, S. Sanei
{"title":"A Diffusion Adaptation Approach to model Brain Responses in an EEG-based Hyperscanning Study","authors":"A. Falcon-Caro, M. Frîncu, S. Sanei","doi":"10.1109/SSP53291.2023.10207972","DOIUrl":null,"url":null,"abstract":"In this paper, for the first time a brain connectivity-enhanced diffusion adaptation is introduced and applied to an electroencephalogram (EEG) hyperscanning brain-computer interfacing scenario where the EEGs from two brains are recorded during the performance of a collaborative task. In the diffusion adaptation formulation for modeling, the link between one brain (under rehabilitation) which follows the other (healthy) brain, the combination weights are replaced by the connectivity estimates and the corresponding EEG channels of the healthy subject are used as the targets for the adaptation algorithm. The outcome can be used as a new rehabilitation platform where the state of the patient under rehabilitation depends on how well his/her brain signals can follow the target brain signals.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, for the first time a brain connectivity-enhanced diffusion adaptation is introduced and applied to an electroencephalogram (EEG) hyperscanning brain-computer interfacing scenario where the EEGs from two brains are recorded during the performance of a collaborative task. In the diffusion adaptation formulation for modeling, the link between one brain (under rehabilitation) which follows the other (healthy) brain, the combination weights are replaced by the connectivity estimates and the corresponding EEG channels of the healthy subject are used as the targets for the adaptation algorithm. The outcome can be used as a new rehabilitation platform where the state of the patient under rehabilitation depends on how well his/her brain signals can follow the target brain signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在基于脑电图的超扫描研究中,扩散适应方法模拟大脑反应
在本文中,首次引入了脑连接增强扩散适应,并将其应用于脑电图(EEG)超扫描脑机接口场景,在该场景中,两个大脑在执行协作任务期间的脑电图被记录下来。在建模的扩散自适应公式中,将一个脑(康复)与另一个脑(健康)之间的连接,用连接估计取代组合权值,并将健康受试者相应的脑电信号通道作为自适应算法的目标。这个结果可以作为一个新的康复平台,病人在康复中的状态取决于他/她的大脑信号跟随目标大脑信号的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1