Liming Fu, Peng Liang, Z. Rasheed, Zengyang Li, Amjed Tahir, Xiaofeng Han
{"title":"Potential Technical Debt and Its Resolution in Code Reviews: An Exploratory Study of the OpenStack and Qt Communities","authors":"Liming Fu, Peng Liang, Z. Rasheed, Zengyang Li, Amjed Tahir, Xiaofeng Han","doi":"10.1145/3544902.3546253","DOIUrl":null,"url":null,"abstract":"Background: Technical Debt (TD) refers to the situation where developers make trade-offs to achieve short-term goals at the expense of long-term code quality, which can have a negative impact on the quality of software systems. In the context of code review, such sub-optimal implementations have chances to be timely resolved during the review process before the code is merged. Therefore, we could consider them as Potential Technical Debt (PTD) since PTD will evolve into TD when it is injected into software systems without being resolved. Aim: To date, little is known about the extent to which PTD is identified in code reviews. Many tools have been provided to detect TD, but these tools lack consensus and a large amount of PTD are undetectable by tools while code review could help verify the quality of code that has been committed by identifying issues, such as PTD. To this end, we conducted an exploratory study in an attempt to understand the nature of PTD in code reviews and track down the resolution of PTD after being identified. Method: We randomly collected 2,030 review comments from the Nova project of OpenStack and the Qt Base project of Qt. We then manually checked these review comments, and obtained 163 PTD-related review comments for further analysis. Results: Our results show that: (1) PTD can be identified in code reviews but is not prevalent. (2) Design, defect, documentation, requirement, test, and code PTD are identified in code reviews, in which code and documentation PTD are the dominant. (3) 81.0% of the PTD identified in code reviews has been resolved by developers, and 78.0% of the resolved TD was resolved by developers within a week. (4) Code refactoring is the main practice used by developers to resolve the PTD identified in code reviews. Conclusions: Our findings indicate that: (1) review-based detection of PTD is seen as one of the trustworthy mechanisms in development, and (2) there is still a significant proportion of PTD (19.0%) remaining unresolved when injected into the software systems. Practitioners and researchers should establish effective strategies to manage and resolve PTD in development.","PeriodicalId":220679,"journal":{"name":"Proceedings of the 16th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544902.3546253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Background: Technical Debt (TD) refers to the situation where developers make trade-offs to achieve short-term goals at the expense of long-term code quality, which can have a negative impact on the quality of software systems. In the context of code review, such sub-optimal implementations have chances to be timely resolved during the review process before the code is merged. Therefore, we could consider them as Potential Technical Debt (PTD) since PTD will evolve into TD when it is injected into software systems without being resolved. Aim: To date, little is known about the extent to which PTD is identified in code reviews. Many tools have been provided to detect TD, but these tools lack consensus and a large amount of PTD are undetectable by tools while code review could help verify the quality of code that has been committed by identifying issues, such as PTD. To this end, we conducted an exploratory study in an attempt to understand the nature of PTD in code reviews and track down the resolution of PTD after being identified. Method: We randomly collected 2,030 review comments from the Nova project of OpenStack and the Qt Base project of Qt. We then manually checked these review comments, and obtained 163 PTD-related review comments for further analysis. Results: Our results show that: (1) PTD can be identified in code reviews but is not prevalent. (2) Design, defect, documentation, requirement, test, and code PTD are identified in code reviews, in which code and documentation PTD are the dominant. (3) 81.0% of the PTD identified in code reviews has been resolved by developers, and 78.0% of the resolved TD was resolved by developers within a week. (4) Code refactoring is the main practice used by developers to resolve the PTD identified in code reviews. Conclusions: Our findings indicate that: (1) review-based detection of PTD is seen as one of the trustworthy mechanisms in development, and (2) there is still a significant proportion of PTD (19.0%) remaining unresolved when injected into the software systems. Practitioners and researchers should establish effective strategies to manage and resolve PTD in development.