Affix-augmented stem-based language model for persian

Heshaam Faili, H. Ravanbakhsh
{"title":"Affix-augmented stem-based language model for persian","authors":"Heshaam Faili, H. Ravanbakhsh","doi":"10.1109/NLPKE.2010.5587823","DOIUrl":null,"url":null,"abstract":"Language modeling is used in many NLP applications like machine translation, POS tagging, speech recognition and information retrieval. It assigns a probability to a sequence of words. This task becomes a challenging problem for high inflectional languages. In this paper we investigate standard statistical language models on the Persian as an inflectional language. We propose two variations of morphological language models that rely on a morphological analyzer to manipulate the dataset before modeling. Then we discuss shortcoming of these models, and introduce a novel approach that exploits the structure of the language and produces more accurate. Experimental results are encouraging especially when we use n-gram models with small training dataset.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Language modeling is used in many NLP applications like machine translation, POS tagging, speech recognition and information retrieval. It assigns a probability to a sequence of words. This task becomes a challenging problem for high inflectional languages. In this paper we investigate standard statistical language models on the Persian as an inflectional language. We propose two variations of morphological language models that rely on a morphological analyzer to manipulate the dataset before modeling. Then we discuss shortcoming of these models, and introduce a novel approach that exploits the structure of the language and produces more accurate. Experimental results are encouraging especially when we use n-gram models with small training dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波斯语词缀增强词干语言模型
语言建模用于许多NLP应用,如机器翻译、词性标注、语音识别和信息检索。它为单词序列分配一个概率。对于高屈折变化的语言来说,这是一个具有挑战性的问题。本文研究了波斯语作为一种屈折变化语言的标准统计语言模型。我们提出了两种形态学语言模型的变体,它们依赖于形态学分析器在建模之前对数据集进行操作。然后讨论了这些模型的不足之处,并介绍了一种利用语言结构的新方法。实验结果令人鼓舞,特别是当我们使用n-gram模型和小训练数据集时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dashboard: An integration and testing platform based on backboard architecture for NLP applications Chinese semantic role labeling based on semantic knowledge Transitivity in semantic relation learning Wisdom media “CAIWA Channel” based on natural language interface agent A new cascade algorithm based on CRFs for recognizing Chinese verb-object collocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1