Real Time Traffic Light Detection and Classification using Deep Learning

Zakaria Ennahhal, Ismail Berrada, Khalid Fardousse
{"title":"Real Time Traffic Light Detection and Classification using Deep Learning","authors":"Zakaria Ennahhal, Ismail Berrada, Khalid Fardousse","doi":"10.1109/wincom47513.2019.8942446","DOIUrl":null,"url":null,"abstract":"Traffic light detection and classification represent a major issue for autonomous driving. Although a number of works have been published on this topic, providing a real-time processing solution is still a challenging task. In this paper, we show, by experimenting three models, namely “Faster R-CNN”, “R-FCN” and “SSD” on and two datasets, namely “Bosch Small Traffic Light Dataset” and “Lisa Traffic Light Dataset”, that we can achieve a higher accuracy while reducing the detection and recognition time. In order to improve the overall performance and take the best score of the trained models, we used the ensembling modeling technique. The obtained results outperform the state-of-the-art.","PeriodicalId":222207,"journal":{"name":"2019 International Conference on Wireless Networks and Mobile Communications (WINCOM)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Wireless Networks and Mobile Communications (WINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wincom47513.2019.8942446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Traffic light detection and classification represent a major issue for autonomous driving. Although a number of works have been published on this topic, providing a real-time processing solution is still a challenging task. In this paper, we show, by experimenting three models, namely “Faster R-CNN”, “R-FCN” and “SSD” on and two datasets, namely “Bosch Small Traffic Light Dataset” and “Lisa Traffic Light Dataset”, that we can achieve a higher accuracy while reducing the detection and recognition time. In order to improve the overall performance and take the best score of the trained models, we used the ensembling modeling technique. The obtained results outperform the state-of-the-art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的实时红绿灯检测与分类
红绿灯检测和分类是自动驾驶的一个主要问题。尽管关于这个主题已经发表了许多作品,但提供实时处理解决方案仍然是一项具有挑战性的任务。本文通过对“Faster R-CNN”、“R-FCN”和“SSD”三种模型以及“Bosch小交通灯数据集”和“Lisa交通灯数据集”两个数据集的实验,证明了我们可以在降低检测和识别时间的同时达到更高的准确率。为了提高训练模型的整体性能并取得最佳分数,我们采用了集成建模技术。所获得的结果优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Klm-PPSA: Klm-based profiling and preventing security attacks for cloud environments: Invited Paper Spatial Efficiency Metric for Wireless Networks Based on Channel Resource Usage A New Design of RFID Tag for Vehicles Localisation Applications Predicting Driver Lane Change Maneuvers Using Driver's Face Compact Size T-Shaped Patch Antenna for E-Band Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1