Continuous adaptive reinforcement learning with the evolution of Self Organizing Classifiers

Danilo Vasconcellos Vargas, H. Takano, J. Murata
{"title":"Continuous adaptive reinforcement learning with the evolution of Self Organizing Classifiers","authors":"Danilo Vasconcellos Vargas, H. Takano, J. Murata","doi":"10.1109/DEVLRN.2013.6652558","DOIUrl":null,"url":null,"abstract":"Learning classifier systems have been solving reinforcement learning problems for some time. However, they face difficulties under multi-step continuous problems. Adaptation may also become harder with time since the convergence of the population decreases its diversity. This article demonstrate that the novel Self Organizing Classifiers method can cope with dynamical multi-step continuous problems. Moreover, adaptation remains the same after convergence.","PeriodicalId":106997,"journal":{"name":"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2013.6652558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Learning classifier systems have been solving reinforcement learning problems for some time. However, they face difficulties under multi-step continuous problems. Adaptation may also become harder with time since the convergence of the population decreases its diversity. This article demonstrate that the novel Self Organizing Classifiers method can cope with dynamical multi-step continuous problems. Moreover, adaptation remains the same after convergence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自组织分类器进化的持续自适应强化学习
学习分类器系统解决强化学习问题已经有一段时间了。然而,在多步连续问题下,它们面临着困难。随着时间的推移,适应也会变得更加困难,因为种群的趋同减少了其多样性。本文证明了这种新的自组织分类器方法可以处理动态多步连续问题。此外,趋同后的适应仍然不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Epigenetic adaptation through hormone modulation in autonomous robots Attentional constraints and statistics in toddlers' word learning Do humans need learning to read humanoid lifting actions? Temporal emphasis for goal extraction in task demonstration to a humanoid robot by naive users Developing learnability — The case for reduced dimensionality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1