Optimally mitigating BTI-induced FPGA device aging with discriminative voltage scaling (abstract only)

Yu Bai, Mohammed Alawad, Mingjie Lin
{"title":"Optimally mitigating BTI-induced FPGA device aging with discriminative voltage scaling (abstract only)","authors":"Yu Bai, Mohammed Alawad, Mingjie Lin","doi":"10.1145/2554688.2554752","DOIUrl":null,"url":null,"abstract":"With the CMOS technology aggressively scaling towards the 22nm node, modern FPGA devices face tremendous aging- induced reliability challenges due to Bias Temperature In- stability (BTI) and Hot Carrier Injection (HCI). This paper presents a novel antiaging technique at logic level that is both scalable and applicable for VLSI digital circuits implemented with FPGA devices. The key idea is to prolong the lifetime of FPGA-mapped designs by strategically elevating the VDD values of some LUTs based on their modular criticality values. Although the idea of scaling VDD in order to improve either energy efficiency or circuit reliability has been explored extensively, our study distinguishes itself by approaching this challenge through analytical procedure, therefore able to maximize the overall reliability of target FPGA design by rigorously modelling the BTI-induce de- vice reliability and optimally solving the VDD assignment problem.","PeriodicalId":390562,"journal":{"name":"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554688.2554752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the CMOS technology aggressively scaling towards the 22nm node, modern FPGA devices face tremendous aging- induced reliability challenges due to Bias Temperature In- stability (BTI) and Hot Carrier Injection (HCI). This paper presents a novel antiaging technique at logic level that is both scalable and applicable for VLSI digital circuits implemented with FPGA devices. The key idea is to prolong the lifetime of FPGA-mapped designs by strategically elevating the VDD values of some LUTs based on their modular criticality values. Although the idea of scaling VDD in order to improve either energy efficiency or circuit reliability has been explored extensively, our study distinguishes itself by approaching this challenge through analytical procedure, therefore able to maximize the overall reliability of target FPGA design by rigorously modelling the BTI-induce de- vice reliability and optimally solving the VDD assignment problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过区分电压缩放优化缓解bti诱导的FPGA器件老化(仅摘要)
随着CMOS技术向22nm节点的积极扩展,由于偏置温度稳定性(BTI)和热载流子注入(HCI),现代FPGA器件面临着巨大的老化引起的可靠性挑战。本文提出了一种新的逻辑级抗老化技术,该技术既可扩展,又适用于用FPGA器件实现的超大规模集成电路数字电路。关键思想是通过基于模块临界值战略性地提高一些lut的VDD值来延长fpga映射设计的寿命。虽然为了提高能源效率或电路可靠性而扩展VDD的想法已经被广泛探索,但我们的研究通过分析过程来解决这一挑战,因此能够通过严格建模bti诱导的设备可靠性和最佳解决VDD分配问题来最大化目标FPGA设计的整体可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy-efficient multiplier-less discrete convolver through probabilistic domain transformation Revisiting and-inverter cones Pushing the performance boundary of linear projection designs through device specific optimisations (abstract only) MORP: makespan optimization for processors with an embedded reconfigurable fabric Co-processing with dynamic reconfiguration on heterogeneous MPSoC: practices and design tradeoffs (abstract only)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1