{"title":"A Pyramid CNN for Dense-Leaves Segmentation","authors":"Daniel Morris","doi":"10.1109/CRV.2018.00041","DOIUrl":null,"url":null,"abstract":"Automatic detection and segmentation of overlapping leaves in dense foliage can be a difficult task, particularly for leaves with strong textures and high occlusions. We present Dense-Leaves, an image dataset with ground truth segmentation labels that can be used to train and quantify algorithms for leaf segmentation in the wild. We also propose a pyramid convolutional neural network with multi-scale predictions that detects and discriminates leaf boundaries from interior textures. Using these detected boundaries, closed-contour boundaries around individual leaves are estimated with a watershed-based algorithm. The result is an instance segmenter for dense leaves. Promising segmentation results for leaves in dense foliage are obtained.","PeriodicalId":281779,"journal":{"name":"2018 15th Conference on Computer and Robot Vision (CRV)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th Conference on Computer and Robot Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2018.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
Automatic detection and segmentation of overlapping leaves in dense foliage can be a difficult task, particularly for leaves with strong textures and high occlusions. We present Dense-Leaves, an image dataset with ground truth segmentation labels that can be used to train and quantify algorithms for leaf segmentation in the wild. We also propose a pyramid convolutional neural network with multi-scale predictions that detects and discriminates leaf boundaries from interior textures. Using these detected boundaries, closed-contour boundaries around individual leaves are estimated with a watershed-based algorithm. The result is an instance segmenter for dense leaves. Promising segmentation results for leaves in dense foliage are obtained.