Efficient simulation of autofluorescence effects in microscopic lenses

H. Gross, O. Rodenko, M. Esslinger, A. Tünnermann
{"title":"Efficient simulation of autofluorescence effects in microscopic lenses","authors":"H. Gross, O. Rodenko, M. Esslinger, A. Tünnermann","doi":"10.1117/12.2191260","DOIUrl":null,"url":null,"abstract":"The use of fluorescence in microscopy is a well known technology today. Due to the autofluorescence of the materials of the optical system components, the contrast of the images is degraded. The calculation of autofluorescense usually is performed by brute force methods as volume scattering. The efficiency of calculations in this case is extremely low and a huge number of rays must be calculated. In stray light calculations the concept of important sampling is used to reduce computational effort. The idea is to calculate only rays, which have the chance to reach the target surface. The fluorescence conversion can be considered to be a scatter process and therefore a modification of this idea is used here. The reduction factor is calculated by simply comparing in every z-plane of the lenses the size of the illuminated phase space domain with the corresponding acceptance domain. The boundaries of the domains are determined by simple tracing of the limiting rays of the light cone of the source as well as the pixel area under consideration. The small overlap of both domains can be estimated by geometrical considerations. The correct photometric scaling and the discretization of the volumes must be performed properly. Some necessary approximations produce negligible errors. The improvement in run time is in the range of 104. It is shown with some practical examples of microscopic lenses, that the results are comparable with conventional methods. The limitations and the consequences for questions of the lens design are discussed.","PeriodicalId":212434,"journal":{"name":"SPIE Optical Systems Design","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optical Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2191260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of fluorescence in microscopy is a well known technology today. Due to the autofluorescence of the materials of the optical system components, the contrast of the images is degraded. The calculation of autofluorescense usually is performed by brute force methods as volume scattering. The efficiency of calculations in this case is extremely low and a huge number of rays must be calculated. In stray light calculations the concept of important sampling is used to reduce computational effort. The idea is to calculate only rays, which have the chance to reach the target surface. The fluorescence conversion can be considered to be a scatter process and therefore a modification of this idea is used here. The reduction factor is calculated by simply comparing in every z-plane of the lenses the size of the illuminated phase space domain with the corresponding acceptance domain. The boundaries of the domains are determined by simple tracing of the limiting rays of the light cone of the source as well as the pixel area under consideration. The small overlap of both domains can be estimated by geometrical considerations. The correct photometric scaling and the discretization of the volumes must be performed properly. Some necessary approximations produce negligible errors. The improvement in run time is in the range of 104. It is shown with some practical examples of microscopic lenses, that the results are comparable with conventional methods. The limitations and the consequences for questions of the lens design are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
显微透镜中自体荧光效应的有效模拟
在显微镜中使用荧光是一项众所周知的技术。由于光学系统组件材料的自身荧光,图像的对比度降低。自荧光的计算通常采用体积散射等蛮力法。在这种情况下,计算效率极低,必须计算大量的光线。在杂散光计算中,采用重要采样的概念来减少计算量。这个想法是只计算有机会到达目标表面的光线。荧光转换可以被认为是一个散射过程,因此这里使用了对这一思想的修改。通过简单地比较透镜的每个z平面上被照亮的相空间域的大小与相应的接受域的大小来计算减小系数。通过简单地跟踪光源光锥的极限光线以及所考虑的像素区域来确定域的边界。两个域的小重叠可以通过几何考虑来估计。必须正确地进行光度标度和体积离散化。一些必要的近似产生的误差可以忽略不计。运行时间的改进在104的范围内。显微透镜的实例表明,所得结果与传统方法相当。讨论了透镜设计问题的局限性和后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of laser radar tooling ball measurements: focus dependence Performance of silicon immersed gratings: measurement, analysis, and modeling High reflecting dielectric mirror coatings deposited with plasma assisted reactive magnetron sputtering Fluorescence and multilayer structure of the scorpion cuticle Multispectral thin film coating on infrared detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1