Kinematic Synthesis Using Reinforcement Learning

Kaz Vermeer, Reinier Kuppens, J. Herder
{"title":"Kinematic Synthesis Using Reinforcement Learning","authors":"Kaz Vermeer, Reinier Kuppens, J. Herder","doi":"10.1115/DETC2018-85529","DOIUrl":null,"url":null,"abstract":"The presented research demonstrates the synthesis of two-dimensional kinematic mechanisms using feature-based reinforcement learning. As a running example the classic challenge of designing a straight-line mechanism is adopted: a mechanism capable of tracing a straight line as part of its trajectory. This paper presents a basic framework, consisting of elements such as mechanism representations, kinematic simulations and learning algorithms, as well as some of the resulting mechanisms and a comparison to prior art. Series of successful mechanisms have been synthesized for path generation of a straight line and figure-eight.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"316 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The presented research demonstrates the synthesis of two-dimensional kinematic mechanisms using feature-based reinforcement learning. As a running example the classic challenge of designing a straight-line mechanism is adopted: a mechanism capable of tracing a straight line as part of its trajectory. This paper presents a basic framework, consisting of elements such as mechanism representations, kinematic simulations and learning algorithms, as well as some of the resulting mechanisms and a comparison to prior art. Series of successful mechanisms have been synthesized for path generation of a straight line and figure-eight.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的运动学综合
本研究展示了利用基于特征的强化学习对二维运动机构的综合。作为一个运行的例子,采用了设计直线机构的经典挑战:一个能够追踪直线作为其轨迹的一部分的机构。本文提出了一个基本框架,包括机制表示,运动学模拟和学习算法等元素,以及一些产生的机制和与现有技术的比较。合成了一系列成功的直线和八字形路径生成机构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Electricity Grid As an Agent-Based Market System: Exploring the Effects of Policy on Sustainability Ontology-Based Unified Representation of Dynamic Simulation Models in Engineering Design Reducing Evaluation Cost for Circuit Synthesis Using Active Learning Computational Design of a Personalized Artificial Spinal Disc for Additive Manufacturing With Physiological Rotational Motions Short-Term Load Forecasting With Different Aggregation Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1