A Temporal Pattern Mining Based Approach for Intrusion Detection Using Similarity Measure

V. Radhakrishna, P. Kumar, V. Janaki
{"title":"A Temporal Pattern Mining Based Approach for Intrusion Detection Using Similarity Measure","authors":"V. Radhakrishna, P. Kumar, V. Janaki","doi":"10.1145/2832987.2833077","DOIUrl":null,"url":null,"abstract":"In this paper, the major objective is to identify the intrusion using temporal pattern mining. The idea is to find the normal system call patterns and use these patterns to identify abnormal system call patterns. For finding the normal system calls we use the concept of association patterns and find the temporal association patterns. The reference sequence is used to obtain the temporal association patterns satisfying the user defined threshold. To find the temporal association system call patterns, we apply our novel procedure which performs only a single database scan. This reduces the extra overhead in generating the frequent system call patterns minimizing the space complexity. To find the similarity or dissimilarity values we use our proposed measure. The results show that the proposed approach overcomes the disadvantages of the traditional distance measures.","PeriodicalId":416001,"journal":{"name":"Proceedings of the The International Conference on Engineering & MIS 2015","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the The International Conference on Engineering & MIS 2015","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2832987.2833077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper, the major objective is to identify the intrusion using temporal pattern mining. The idea is to find the normal system call patterns and use these patterns to identify abnormal system call patterns. For finding the normal system calls we use the concept of association patterns and find the temporal association patterns. The reference sequence is used to obtain the temporal association patterns satisfying the user defined threshold. To find the temporal association system call patterns, we apply our novel procedure which performs only a single database scan. This reduces the extra overhead in generating the frequent system call patterns minimizing the space complexity. To find the similarity or dissimilarity values we use our proposed measure. The results show that the proposed approach overcomes the disadvantages of the traditional distance measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间模式挖掘的相似度量入侵检测方法
本文的主要目标是利用时间模式挖掘来识别入侵。其思想是找到正常的系统调用模式,并使用这些模式来识别异常的系统调用模式。为了找到正常的系统调用,我们使用关联模式的概念并找到时间关联模式。该参考序列用于获得满足用户定义阈值的时间关联模式。为了找到时态关联系统调用模式,我们应用了我们的新过程,它只执行一次数据库扫描。这减少了生成频繁系统调用模式的额外开销,最大限度地减少了空间复杂性。为了找到相似或不相似的值,我们使用我们提出的测量方法。结果表明,该方法克服了传统距离测量方法的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Discrete Flower Pollination Algorithm for Graph Coloring Problem QoS web service Security Access Control case study using HTTP Secured Socket Layer Approach An improved k-Means Clustering algorithm for Intrusion Detection using Gaussian function A Feature Vector Based Approach for Software Component Clustering and Reuse Using K-means A Proposed Method to Recognize the Research Trends using Web-based Search Engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1