A. Bettini, T. Cosnier, A. Magnani, O. Syshchyk, M. Borga, S. Decoutere, A. Neviani
{"title":"Analysis and Design of a Fully-Integrated Pulsed LiDAR Driver in 100V-GaN IC Technology","authors":"A. Bettini, T. Cosnier, A. Magnani, O. Syshchyk, M. Borga, S. Decoutere, A. Neviani","doi":"10.1109/prime55000.2022.9816827","DOIUrl":null,"url":null,"abstract":"The design of an integrated 40A pulsed driver for ToF LiDAR in GaN-on-SOI technology is presented. The produced laser current, generated by a resonant circuit, can achieve sub-nanosecond rise time. The design aims to optimally exploit GaN technology, mitigating source bounce effects and compensating the lack of complementary devices, while preserving reliability. The integration process minimizes parasitics via wafer-level-chip-scale packaging (WLCSP), enhancing the performance of the driver.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The design of an integrated 40A pulsed driver for ToF LiDAR in GaN-on-SOI technology is presented. The produced laser current, generated by a resonant circuit, can achieve sub-nanosecond rise time. The design aims to optimally exploit GaN technology, mitigating source bounce effects and compensating the lack of complementary devices, while preserving reliability. The integration process minimizes parasitics via wafer-level-chip-scale packaging (WLCSP), enhancing the performance of the driver.