Modeling Spatio-temporal Change Pattern using Mathematical Morphology

Monidipa Das, S. Ghosh
{"title":"Modeling Spatio-temporal Change Pattern using Mathematical Morphology","authors":"Monidipa Das, S. Ghosh","doi":"10.1145/2888451.2888458","DOIUrl":null,"url":null,"abstract":"Detection and assessment of spatio-temporal change pattern is a challenging task, and may provide insights into various spatio-temporal changes, like urban sprawl monitoring, surveillance of epidemics due to infectious diseases etc. The existing spatio-temporal pattern mining techniques mostly deal with the assessment of thematic change patterns. However, analyzing the spatio-temporal pattern of geometric changes is also important for analyzing such kinds of spatial changes on a temporal scale. This paper presents a novel framework for modeling such spatio-temporal change in geometry with the help of mathematical morphology and directional granulometric analysis. Morphological operators have been used to detect the various spatio-temporal change patterns in geometry, like spatial growth (due to Expansion and Merge), spatial shrinkage (due to Contraction and Split) etc. Further, the temporal changes in the orientations of these patterns have been modeled by performing granulometric analyses on them. The proposed framework for spatio-temporal change pattern modeling has been validated considering four cases of spatio-temporal change, namely (i) spatial expansion, (ii) spatial contraction, (iii) spatial merge, and (iv) spatial split in regional distribution of climate zones in Australia.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2888451.2888458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Detection and assessment of spatio-temporal change pattern is a challenging task, and may provide insights into various spatio-temporal changes, like urban sprawl monitoring, surveillance of epidemics due to infectious diseases etc. The existing spatio-temporal pattern mining techniques mostly deal with the assessment of thematic change patterns. However, analyzing the spatio-temporal pattern of geometric changes is also important for analyzing such kinds of spatial changes on a temporal scale. This paper presents a novel framework for modeling such spatio-temporal change in geometry with the help of mathematical morphology and directional granulometric analysis. Morphological operators have been used to detect the various spatio-temporal change patterns in geometry, like spatial growth (due to Expansion and Merge), spatial shrinkage (due to Contraction and Split) etc. Further, the temporal changes in the orientations of these patterns have been modeled by performing granulometric analyses on them. The proposed framework for spatio-temporal change pattern modeling has been validated considering four cases of spatio-temporal change, namely (i) spatial expansion, (ii) spatial contraction, (iii) spatial merge, and (iv) spatial split in regional distribution of climate zones in Australia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数学形态学的时空变化模式建模
时空变化模式的检测和评估是一项具有挑战性的任务,可以为城市蔓延监测、传染病流行监测等各种时空变化提供见解。现有的时空模式挖掘技术主要针对主题变化模式的评估。然而,分析几何变化的时空格局对于在时间尺度上分析这类空间变化也很重要。本文提出了一种新的框架,利用数学形态学和定向粒度分析在几何上模拟这种时空变化。形态学算子已被用于检测几何空间的各种时空变化模式,如空间增长(由于扩张和合并),空间收缩(由于收缩和分裂)等。此外,通过对这些模式进行粒度分析,模拟了这些模式方向的时间变化。基于澳大利亚气候带区域分布的空间扩张、空间收缩、空间融合和空间分裂四种时空变化情况,对所提出的时空变化模式建模框架进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Dynamics of Username Changing Behavior on Twitter Smart filters for social retrieval Improving Urban Transportation through Social Media Analytics AMEO 2015: A dataset comprising AMCAT test scores, biodata details and employment outcomes of job seekers Learning from Gurus: Analysis and Modeling of Reopened Questions on Stack Overflow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1