Distributed Quantile Regression with Non-Convex Sparse Penalties

Reza Mirzaeifard, Vinay Chakravarthi Gogineni, Naveen K. D. Venkategowda, Stefan Werner
{"title":"Distributed Quantile Regression with Non-Convex Sparse Penalties","authors":"Reza Mirzaeifard, Vinay Chakravarthi Gogineni, Naveen K. D. Venkategowda, Stefan Werner","doi":"10.1109/SSP53291.2023.10208080","DOIUrl":null,"url":null,"abstract":"The surge in data generated by IoT sensors has increased the need for scalable and efficient data analysis methods, particularly for robust algorithms like quantile regression, which can be tailored to meet a variety of situations, including nonlinear relationships, distributions with heavy tails, and outliers. This paper presents a sub-gradient-based algorithm for distributed quantile regression with non-convex, and non-smooth sparse penalties such as the Minimax Concave Penalty (MCP) and Smoothly Clipped Absolute Deviation (SCAD). These penalties selectively shrink non-active coefficients towards zero, addressing the limitations of traditional penalties like the l1-penalty in sparse models. Existing quantile regression algorithms with non-convex penalties are designed for centralized cases, whereas our proposed method can be applied to distributed quantile regression using non-convex penalties, thereby improving estimation accuracy. We provide a convergence proof for our proposed algorithm and demonstrate through numerical simulations that it outperforms state-of-the-art algorithms in sparse and moderately sparse scenarios.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The surge in data generated by IoT sensors has increased the need for scalable and efficient data analysis methods, particularly for robust algorithms like quantile regression, which can be tailored to meet a variety of situations, including nonlinear relationships, distributions with heavy tails, and outliers. This paper presents a sub-gradient-based algorithm for distributed quantile regression with non-convex, and non-smooth sparse penalties such as the Minimax Concave Penalty (MCP) and Smoothly Clipped Absolute Deviation (SCAD). These penalties selectively shrink non-active coefficients towards zero, addressing the limitations of traditional penalties like the l1-penalty in sparse models. Existing quantile regression algorithms with non-convex penalties are designed for centralized cases, whereas our proposed method can be applied to distributed quantile regression using non-convex penalties, thereby improving estimation accuracy. We provide a convergence proof for our proposed algorithm and demonstrate through numerical simulations that it outperforms state-of-the-art algorithms in sparse and moderately sparse scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非凸稀疏惩罚的分布分位数回归
物联网传感器产生的数据激增增加了对可扩展和高效数据分析方法的需求,特别是对分位数回归等鲁棒算法的需求,这些算法可以定制以满足各种情况,包括非线性关系、重尾分布和异常值。本文提出了一种基于次梯度的非凸、非光滑稀疏惩罚(如极大极小凹惩罚(MCP)和平滑裁剪绝对偏差(SCAD))的分布式分位数回归算法。这些惩罚有选择地将非活动系数缩小到零,解决了传统惩罚(如稀疏模型中的11惩罚)的局限性。现有的非凸惩罚分位数回归算法是针对集中情况设计的,而我们的方法可以应用于使用非凸惩罚的分布式分位数回归,从而提高了估计精度。我们为我们提出的算法提供了收敛证明,并通过数值模拟证明,它在稀疏和适度稀疏的情况下优于最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1